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Abstract. We obtain an asymptotic formula for the number of ways to rep-

resent every reduced residue class as a product of a prime and square-free

integer. This may be considered as a relaxed version of a conjecture of Erdös,
Odlyzko, and Sárközy.

1. Introduction

A conjecture of Erdös, Odlyzko, and Sárközy [4] asks if for every reduced residue
class a modulo m can be represented as a product

p1p2 ≡ a (mod m) (1.1)

for two primes p1, p2 ≤ m. Friedlander, Kurlberg, and Shparlinski [7] considered an
average of (1.1) over a and m, and also various modification of (1.1). Garaev [8, 9]
improved on these modifications. Other interesting variants of (1.1) had also been
considered by Baker [1], Ramaré & Walker [12], Shparlinski [13, 14], Walker [15].

In this paper, we are concerned with bounding the quantity

#
{

(p, s) : ps ≡ a (mod q), p ≤ P, s ≤ S, µ2(s) = 1, (ps, q) = 1
}

for (a, q) = 1. This may also be viewed as a multiplicative analogue in the setting of
finite fields of a result of Estermann [5]. Estermann [5] showed that all sufficiently
large positive integer can be written as a sum of a prime and a square-free integer,
see also [10, 11]. Recently, Dudek [3] showed that this is true for all positive integer
greater than two.

Our method uses the nice factoring property of the characteristic function for
square-free integers

µ2(n) =
∑
d2|n

µ(d), (1.2)

together with bounds for Kloosterman sums over primes supplied by Fourvy and
Shparlinski [6], extending those previous result of Garaev [8].

2. Notation

The notation U = O(V ) is abbreviated to U � V , i.e., there exists an absolute
constant C > 0 such that U ≤ CV . Throughout this paper p a prime number, µ
is the Möbius function, τ(n) is the number of positive divisors of n and ϕ(n) is the
number of positive integers up to n coprime to n.

2010 Mathematics Subject Classification 11L05, 11A07.

Key words and phrases: Kloosterman sums, congruences.



94 KAM HUNG YAU

3. Result

We denote

πq(P ) = #{p ≤ P : (p, q) = 1}

to be the number of primes up to P coprime to q, and

sq(S) = #{s ≤ S : µ2(s) = 1, (s, q) = 1}
to be the number of square-free integers up to S coprime to q. For (a, q) = 1,
denote N#

a,q(P, S) by the quantity

#
{

(p, s) : ps ≡ a (mod q), p ≤ P, s ≤ S, µ2(s) = 1, (ps, q) = 1
}
.

Theorem 3.1. For all fixed A, ε > 0, we have

N#
a,q(P, S) =

πq(P )sq(S)

q
+O

(
(PS)o(1)S1/2E

)
uniformly for q ≤ PO(1) and (a, q) = 1, where

E =



Pq−1 if q ≤ (logP )A,

P

q3/4
+
P 9/10

q3/8
if (logP )A < q < P 3/4,

P 31/32

q(1−ε)/2
+

P 5/6

q(3/4−ε)/2
if P 3/4 ≤ q.

The main term in Theorem 3.1 is

πq(P )sq(S)

q
� 1

q

P

logP

(
ϕ(q)S

q
+O(τ(q))

)
� P 1+o(1)Sq−1

since q ≤ PO(1). It follows that N#
a,q(P, S) > 0 when P → ∞ if either one of the

following three conditions below holds.
(1) q ≤ (logP )A and there exists an ε > 0 such that S � P ε.

(2) (logP )A < q < P 3/4 and there exists an ε > 0 such that

S2 � (PS)εq and P 4S20 � (PS)εq25.

(3) P 3/4 ≤ q and there exists an ε > 0 such that

PS16 � (PS)εq16 and P 4S12 � (PS)εq15.

4. Preliminaries

For (a, q) = 1, we denote the Kloosterman sum over primes

Sq(a;x) =
∑
p≤x

(p,q)=1

eq(ap̄).

Here eq(x) = exp(2πix/q) and p is the multiplicative inverse for pmodulo q. Bounds
for when q is a prime had been obtained by Garaev [8]. Fouvry and Shparlinski [6]
extended these results for composite q. We gather Theorem 3.1, 3.2 and (3.13)
from [6] into the following lemma.
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Lemma 4.1. For every fixed A, ε > 0, we have

Sq(a;x) = O(Bq(x)),

uniformly for integer q ≥ 2, (a, q) = 1 and x ≥ 2. Here

Bq(x) =


x1+o(1)q−1 if q ≤ (log x)A,

(q−1/2x+ q1/4x4/5)xo(1) if (log x)A < q < x3/4,

(x15/16 + q1/4x2/3)qε if x3/4 ≤ q.

Denote

Na,q(P, S) = # {(p, s) : ps ≡ a (mod q), p ≤ P, s ≤ S, (ps, q) = 1}

for (a, q) = 1. Below we provide an upper bounds for Na,q(P, S).

Lemma 4.2. For q ≤ PO(1), we have

Na,q(P, S)�
(
PS

q
+ 1

)
(PS)o(1).

Proof. By counting the number of solutions to ps = a+ kq. we obtain the bound
k � (PS/q + 1). For each a+ kq, the number of distinct prime factors is no more
than

� log(kq)� log(PS + q)� log(PS)� (PS)o(1),

from our upper bound on k. ut

Denote

Nq(P, S) = #{(p, s) : p ≤ P, s ≤ S, (ps, q) = 1}.

We relate the quantity Na,q(P, S) with Nq(P, S).

Lemma 4.3. For all fixed ε > 0, we have

Na,q(P, S) =
Nq(P, S)

q
+O(Bq(P )),

uniformly for (a, q) = 1, where Bq is defined as in Lemma 4.1.

Proof. We interpret this as a uniform distribution problem. Namely we consider

s ≡ ap̄ (mod q)

which fall in the interval [1, S]. The result follows from Lemma 4.1 applied with
the Erdös-Turán inequality, see [2]. ut

Now we can provide a bound for Nq(P, S).

Lemma 4.4. For q ≤ PO(1), we have

Nq(P, S) =
ϕ(q)πq(P )S

q
+O(P 1+o(1)).
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Proof. Note the identity ∑
d|n

µ(d) =

{
1 if n = 1,

0 otherwise.

We have

Nq(P, S) =
∑
p≤P

(p,q)=1

1
∑
s≤S

(s,q)=1

1

= πq(P )
∑
s≤S

∑
d|s
d|q

µ(d)

= πq(P )

(
ϕ(q)S

q
+O(τ(q))

)
=
ϕ(q)πq(P )S

q
+O(P 1+o(1)).

ut

We also provide a bound for sq(S).

Lemma 4.5. We have

sq(S) =
ϕ(q)

q

∏
p-q

(
1− 1

p2

)
S +O(S1/2qo(1)).

Proof. We first expand sq(S):

sq(S) =
∑

d≤S1/2

(d,q)=1

µ(d)
∑

s≤S/d2

(s,q)=1

1

=
∑

d≤S1/2

(d,q)=1

µ(d)
∑

s≤S/d2

∑
r|s
r|q

µ(r).

Interchanging summation and completing the series, we get

sq(S) =
∑
r|q

µ(r)
∑

d≤S1/2

(d,q)=1

µ(d)

(
S

d2r
+O(1)

)

=
ϕ(q)

q

 ∞∑
d=1

(d,q)=1

µ(d)

d2
−

∑
d>S1/2

(d,q)=1

µ(d)

d2

S +O(S1/2τ(q))

=
ϕ(q)

q

∏
p-q

(
1− 1

p2

)
S +O(S1/2qo(1)).

Note that we used the below equality:

ϕ(q) = q
∏
p|q

(
1− 1

q

)
= q

∑
r|q

µ(r)

r
.

ut
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5. Proof of Theorem 3.1

Using (1.2), we obtain

N#
a,q(P, S) =

∑
p≤P

∑
s≤S

ps≡a (mod q), (ps,q)=1

µ2(s)

=
∑

d≤S1/2

(d,q)=1

µ(d)Nad−2,q(P, S/d2)

= Σ1 + Σ2,

where

Σ1 =
∑
d≤D

(d,q)=1

µ(d)Nad−2,q(P, S/d2),

and

Σ2 =
∑

D<d≤S1/2

(d,q)=1

µ(d)Nad−2,q(P, S/d2).

Here D = D(P, S) is a parameter that will be chosen later.
We bound Σ2 by Lemma 4.2:

Σ2 �
∑

D<d≤S1/2

(
PS

d2q
+ 1

)(
PS

d2

)o(1)

� (PS)o(1)
(
PS

qD
+ S1/2

)
.

Using Lemma 4.3 and 4.4 we get

Σ1 =
∑
d≤D

(d,q)=1

µ(d)

(
Nq(P, S/d2)

q
+O(Bq(P ))

)

=
∑
d≤D

(d,q)=1

µ(d)

(
ϕ(q)πq(P )S

q2d2
+O(P 1+o(1)q−1)

)
+O(DBq(P )).
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Completing the series in the summation over d, we assert that

Σ1 =
ϕ(q)πq(P )S

q2

 ∞∑
d=1

(d,q)=1

µ(d)

d2
−

∑
d>D

(d,q)=1

µ(d)

d2


+O(D{Bq(P ) + P 1+o(1)q−1})

=
πq(P )

q

ϕ(q)S

q

∞∑
d=1

(d,q)=1

µ(d)

d2

+O

(
PS

qD
+DBq(P )

)

=
πq(P )sq(S)

q
+O

(
S1/2πq(P )

q1+o(1)
+
PS

qD
+DBq(P )

)
, (5.1)

where the last line follows from Lemma 4.5.
Now we set

D =



S1/2P o(1) if q ≤ (logP )A,(
PS

Pq1/2 + q5/4P 4/5

)1/2

P o(1) if (logP )A < q < P 3/4,(
PS

q1+ε(P 15/16 + q1/4P 2/3)

)1/2

if P 3/4 ≤ q.

Then the last two terms in (5.1) are equal and it follows that

N#
a,q(P, S) =

πq(P )sq(S)

q
+O

((
S1/2πq(P )

q1+o(1)
+
PS

qD
+ S1/2

)
(PS)o(1)

)
.

If q ≤ (logP )A then the error term above is majorised by(
PS1/2

q
+ S1/2

)
(PS)o(1) � PS1/2q−1(PS)o(1).

If (logP )A < q < P 3/4 then the error term above is majorised by(
P 1/2S1/2(Pq1/2 + q5/4P 4/5)1/2

q
+ S1/2

)
(PS)o(1)

� S1/2

(
P

q3/4
+
P 9/10

q3/8

)
(PS)o(1).

Lastly, if P 3/4 ≤ q then the error term above is majorised by(
P 1/2S1/2(q1+ε{P 15/16 + q1/4P 2/3})1/2

q
+ S1/2

)
(PS)o(1)

� S1/2

(
P 31/32

q(1−ε)/2
+

P 5/6

q(3/4−ε)/2

)
(PS)o(1).

So the result follows.
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