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Abstract. We obtain an asymptotic formula for the number of ways to rep-
resent every reduced residue class as a product of a prime and square-free
integer. This may be considered as a relaxed version of a conjecture of Erdés,
Odlyzko, and Sarkozy.

1. Introduction

A conjecture of Erdos, Odlyzko, and Sarkozy [4] asks if for every reduced residue
class a modulo m can be represented as a product

p1p2 = a(mod m) (1.1)

for two primes py, po < m. Friedlander, Kurlberg, and Shparlinski [7] considered an

average of (1.1) over a and m, and also various modification of (1.1). Garaev [8, 9]

improved on these modifications. Other interesting variants of (1.1) had also been

considered by Baker [1], Ramaré & Walker [12], Shparlinski [13, 14], Walker [15].
In this paper, we are concerned with bounding the quantity

#{(p,s) : ps = a(mod q),p < P,s < 8, 1i*(s) = 1,(ps, q) = 1}

for (a,q) = 1. This may also be viewed as a multiplicative analogue in the setting of
finite fields of a result of Estermann [5]. Estermann [5] showed that all sufficiently
large positive integer can be written as a sum of a prime and a square-free integer,
see also [10, 11]. Recently, Dudek [3] showed that this is true for all positive integer
greater than two.

Our method uses the nice factoring property of the characteristic function for
square-free integers

w2m) = 3 u(d), (1.2)
d?|n

together with bounds for Kloosterman sums over primes supplied by Fourvy and
Shparlinski [6], extending those previous result of Garaev [8].

2. Notation

The notation U = O(V) is abbreviated to U < V, i.e., there exists an absolute
constant C' > 0 such that U < CV. Throughout this paper p a prime number, p
is the Mobius function, 7(n) is the number of positive divisors of n and ¢(n) is the
number of positive integers up to n coprime to n.
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3. Result
We denote
mo(P)=#{p < P:(p.q) =1}
to be the number of primes up to P coprime to ¢, and
s5q(8) = #{s < S p*(s) = 1,(s,9) = 1}

to be the number of square-free integers up to S coprime to ¢. For (a,q) = 1,
denote N7, (P, S) by the quantity

#{(p,s) : ps =a(mod q),p < P,s < S,1i*(s) = 1,(ps,q) = 1}.
Theorem 3.1. For all fired A,e > 0, we have

NE (P, §) = TelP)5al5) qu(s e ((Ps)yms12E)

uniformly for ¢ < P°W) and (a,q) = 1, where

Pq! if ¢ < (log P)*,
P P9/10 N 5
o : /4
o q3/4+ 7 if (log P)* < g < P/,

p31/32 p5/6

; 3/4
1972 t REZERYE if Pt <q.

The main term in Theorem 3.1 is
mq(P)sg(S) 1 P (SD(Q)S
> -
q qlog P q
> P1+O(1)Sq71
since ¢ < PO 1t follows that N#, (P, S) > 0 when P — oo if either one of the

following three conditions below holds.
(1) ¢ < (log P)” and there exists an ¢ > 0 such that S > P=.

+0(a)

(2) (log P)* < ¢ < P3/* and there exists an £ > 0 such that
52> (PS)¥q and  P1S%° > (PS)%¢*.
(3) P3/% < g and there exists an € > 0 such that
PSY > (PS)¢'® and PS> (PS)%¢".

4. Preliminaries

For (a,q) = 1, we denote the Kloosterman sum over primes

Sqla;z) = Z eq(ap).
p<z
(p,a)=1
Here e,4(z) = exp(2wiz/q) and P is the multiplicative inverse for p modulo g. Bounds
for when ¢ is a prime had been obtained by Garaev [8]. Fouvry and Shparlinski [6]
extended these results for composite g. We gather Theorem 3.1, 3.2 and (3.13)
from [6] into the following lemma.
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Lemma 4.1. For every fized A,e > 0, we have
Sq(a; ) = O(By(x)),

uniformly for integer ¢ > 2, (a,q) =1 and x > 2. Here

gltelg! if ¢ < (logz),
By(x) = { (¢ 2%x 4 ¢ /4% 2™ if (log ) < ¢ < 23/4,
(1'15/16 + q1/4m2/3)q€ Zf x3/4 <q.

Denote
Nag(P,S) = #{(p,s) : ps = a(mod q),p < P,s < 5, (ps, q) = 1}
for (a,q) = 1. Below we provide an upper bounds for N, (P, S).

Lemma 4.2. For ¢ < P°M | we have
PS
Nog(P,S) < <q + 1) (PS)°W,

Proof. By counting the number of solutions to ps = a + kq. we obtain the bound
k < (PS/q+1). For each a + kq, the number of distinct prime factors is no more
than

< log(kq) < log(PS + q) < log(PS) < (PS)°W,

from our upper bound on k. O

Denote
No(P,S) = #{(p,s) :p < P,s < 5, (ps,q) = 1}.
We relate the quantity N, (P, S) with Ny(P, S).
Lemma 4.3. For all fized ¢ > 0, we have
Ny(P,S)

Nag(P,S) = R + O(B,(P)),

uniformly for (a,q) = 1, where By is defined as in Lemma 4.1.
Proof. We interpret this as a uniform distribution problem. Namely we consider
s =ap (mod q)

which fall in the interval [1,S]. The result follows from Lemma 4.1 applied with
the Erdos-Turdn inequality, see [2]. O

Now we can provide a bound for Ny (P, S).

Lemma 4.4. Forq < Po(l), we have

Ny(P,S) = *D(q)W;(P)S + O(PHo),
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Proof. Note the identity
1 ifn=1,
>_nld
0 otherwise.
d|n
We have
> 11

p<P  s<8
P9)=1 (s,9)=1

=m(P) Yy nld)

s<S dls
dlq

= n(P) (225 4 otria)

— (p(q)ﬂ'q(P)S + O(P1+O(1))-

q

We also provide a bound for s4(S5).
Lemma 4.5. We have

Proof. We first expand s,(5):

sq(S) = Z 1(d) Z 1

d<st/? s<8/d?

(d,q)=1 (s,9)=1

D ud) Yo D our)
d<st/? s<8/d? rls
(d,q)=1 rlq

Interchanging summation and completing the series, we get

=Sout) ¥ ula) (o)

rlq d<s'/?
(d,q)=1
_ @S}q) Z /.L S+O(Sl/27(q))
— 1/2
(dip=1 ?5,5_1
= H 1—7 5+0(51/2 o)y,
plq

Note that we used the below equality:
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5. Proof of Theorem 3.1
Using (1.2), we obtain

NE(PS) = X % i)
p<P s<S
ps=a (mod q), (ps,q)=1

= Z u(d)/\/adf?,q(P,S/dQ)

d<s1/?
(d,q)=1
- El + 227
where
Z1 = Z /J/(d>Nad*2,q<Pa S/dQ)a
d<D
(d,q):l

and

E2 = Z M(d)Nad_2,q(Pa S/d2)
D<d<S'/?
(d,q)=1

Here D = D(P,S) is a parameter that will be chosen later.
We bound ¥5 by Lemma 4.2:

PS prs\°W
Yo K Z <d2q + 1) <d2>

D<d<S1/2

PS
P 0(1) 1/2 .
< (PS) (qD +8

Using Lemma 4.3 and 4.4 we get

w3 wta) (BB o, p)))

d<D q
(d,q)=1

_ Z M(d) (SD(q)Trq(P)S#»O(PlJFO(I)q1)>+O(DB(I(P)).

=, 2 d2
(d,q)=1

97
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Completing the series in the summation over d, we assert that

¢ a2
d>D
( (d,q)=1

+O(D{B,(P) + P**Mq1})

5. _ 2@m(P)S — pu(d) w(d)
1= g iz

d=1

d,q)=1

m(P) | (@S < p(d) PS
= — O|(—+DB,(P
q q dz::l 2 | "9\ «(P)
(d,q):l
_ mg(P)sq(S) S%r (P) PS
where the last line follows from Lemma 4.5.
Now we set

§1/2 pe(t) if ¢ < (log P)4,
PS 1/2 )
1 A 3/4
D— (Pq1/2+q5/4P4/5> P if (log P)* < q < P3/4,

PS 1z X
. /4
(q1+s(p15/16 T q1/4p2/3)) it P27 < q.

Then the last two terms in (5.1) are equal and it follows that

# _ mg(P)sq(S5) S'Y2my(P)  PS  1)0 o(1)
N7, (P,S) = Y +0 prewTey + D +S (PS) )

If ¢ < (log P)# then the error term above is majorised by

<_})£;1/2

+ 51/2> (PS)°M) < PSY2q~ 1 (PS)°W.
q
If (log P)* < q < P3/* then the error term above is majorised by

<P1/2S1/2(Pq1/2 + ¢/ P52
q

- 51/2) (PS)°

P })9/10

(5.1)

< S§'/? ( - ) (PS)°W.

g3/ q3/8
Lastly, if P3/4 < ¢ then the error term above is majorised by

<P1/2S1/2(q1+s{P15/16 + q1/4P2/3})1/2
q

+ 51/2) (PS)°d

p31/32 p5/6

1/2 o(1)
<S8 (q<1—e>/2 + q<3/4—e>/2> (PS)

So the result follows.
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