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Abstract. The aim of this paper is to investigate the regularity criterion of

Leray-Hopf weak solutions to the 3D incompressible micropolar fluid equations.

It is shown that if∫ T

0

‖∇π(t)‖
2r

3(r−1)

Lr

‖u(·, t)‖αL3 + ‖ω(·, t)‖αL3

dt <∞ with α =

{
3, 1 < r ≤ 9

7
,

2r
3(r−1)

, 9
7
< r < 3,

then the corresponding weak solution (u, ω) is regular on [0, T ], which is an

obvious extension of the previous results.

1. Introduction

This paper is devoted to study the smoothness of a weak solutions to the Cauchy
problem for three-dimensional micropolar fluid system (see [4]) describing the flow
of a viscous incompressible fluid, namely,

∂tu− (µ+ κ)∆u− κ∇× ω + (u · ∇)u+∇π = 0,
∂tω − γ∆ω − κ∇∇ · ω + 2κω + (u · ∇)ω − κ∇× u = 0,
∇ · u = 0,
u (x, 0) = u0 (x) , ω (x, 0) = ω0 (x) .

(1.1)

Here u = u(x, t) ∈ R3 denotes the velocity of the fluid, ω = ω(x, t) ∈ R3 denotes the
micro-rotational vector field, π denotes the total pressure field of the fluid motion,
while u0 and ω0 are given initial velocity and initial micro-rotational fields with
∇ · u0 = 0 in the sense of distribution. The constants µ,κ, γ and κ are positive
numbers associated to the properties of the material : µ is the kinematic viscosity,
κ is the vortex viscosity, γ and κ are spin viscosities.

The existences of weak and strong solutions for micropolar fluid equations were
treated by Galdi and Rionero [9] and Yamaguchi [17], respectively. However, as
same as the 3D Navier-Stokes equations, the problem on the regularity or finite
time singularity for the weak solution still remains unsolved. Regularity can only
been derived when certain growth conditions are satisfied. For more details, we
can refer to [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 18] and the references cited
therein.
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Very recently, Tran and Yu [16] derived the following regularity criterion for
weak solutions of Navier-Stokes equations (ω = 0) as long∫ T

0

‖π(t)‖
2r

2r−3

Lr

(1 + ‖u(·, t)‖L3)
α dt <∞ with α =


6

2r−3 , r ≥ 3,
2r

2r−3 ,
9
4 ≤ r ≤ 3,

3, 3
2 < r ≤ 9

4

.

In this paper, inspired by the paper of Tran and Yu [16], we will show that a
weak solution (u, ω) is smooth under the assumption that∫ T

0

‖∇π(t)‖
2r

3(r−1)

Lr

‖u(·, t)‖αL3 + ‖ω(·, t)‖αL3

dt <∞ with α =

{
3, 1 < r ≤ 9

7 ,
2r

3(r−1) ,
9
7 < r < 3.

Our result improves the classical Lp(0, T ;Lq(R3)) regularity criteria for the pressure
by factors of certain negative powers of the scaling invariant norms.

Now we present our main result as follows.

Theorem 1.1. Let T > 0 be a given time and (u0, ω0) ∈ H1(R3) ∩ L3(R3) with
∇·u0 = 0. Suppose that (u, ω) is a weak solution of system (1.1) in the time interval
[0, T ) for some 0 < T <∞. If the pressure π satisfies the following condition∫ T

0

‖∇π(t)‖
2r

3(r−1)

Lr

‖u(·, t)‖αL3 + ‖ω(·, t)‖αL3

dt <∞ with α =

{
3, 1 < r ≤ 9

7 ,
2r

3(r−1) ,
9
7 < r < 3,

(1.2)

then (u, ω) is a regular solution on R3 × [0, T ].

Remark 1.2. It should be noted that (1.2) presents a new type of regularity cri-
terion via the pressure by factors of certain negative powers of the scaling invariant
norms ‖u‖L3 and ‖ω‖L3 . The regularity criterion (1.2) still true for the 3D incom-
pressible Navier-Stokes equations.

2. Proof of Theorem 1.1

Now we are in a position to give the proof of Theorem 1.1.
Proof: Since the initial data (u0, ω0) ∈ H1(R3) ∩ L3(R3) with ∇ · u0 = 0, there
exists a unique local strong solution (u, ω) of the 3D micropolar equations on (0, T )
(see [9, 13]). Moreover, the strong solution can be proved to exist on a maximal
time interval using the standard local solution extension technique. Thus the proof
of Theorem 1.1 is reduced to establishing regular estimates uniformly on (0, T ),
and then the local strong solution (u, ω) can be continuously extended to the time
t = T by standard continuation process. Therefore, in what follows, we may as well
assume that the solution (u, ω) is sufficiently smooth on (0, T ).

Now, we first multiply both sides of the equation (1.1) by u |u|, and integrate
with respect to x over R3. After suitable integration by parts, we obtain

1

3

d

dt

∫
R3

|u|3 dx+ (µ+ κ)

∫
R3

|∇u|2 |u| dx+
4

9
(µ+ κ)

∫
R3

∣∣∣∇ |u| 32 ∣∣∣2 dx
= −

∫
R3

∇π · u |u| dx+ κ
∫
R3

∇× ω · u |u| dx, (2.1)

where we have used the following identities due to the divergence free property:∫
R3

(u · ∇u) · u |u| dx =
1

3

∫
R3

u · ∇ |u|3 dx = 0,
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∫
R3

∆u · u |u| dx = −
∫
R3

|∇u|2 |u| dx−
∫
R3

|∇ |u| |2 |u| dx

= −
∫
R3

|∇u|2 |u| dx− 4

9

∫
R3

∣∣∣∇ |u| 32 ∣∣∣2 dx.
Similarly, multiply both sides of the equation (1.1) by ω |ω|, and integrate with
respect to x over R3. After suitable integration by parts, we obtain

1

3

d

dt

∫
R3

|ω|3 dx+ (γ +
κ

2
)

∫
R3

|∇ω|2 |ω| dx+
4

9
(γ + κ)

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx
+
κ

2

∫
R3

|∇ × ω|2 |ω| dx+ 2κ
∫
R3

|ω|3 dx

≤ κ
∫
R3

∇× u · ω |ω| dx, (2.2)

where we have used the fact that ∇(∇ · ω) = ∇× (∇× ω) + ∆ω yields

−
∫
R3

∇(∇ · ω) · ω |ω| dx

= −
∫
R3

(∇× (∇× ω) + ∆ω) · ω |ω| dx

=

∫
R3

|∇ × ω|2 |ω| dx+

∫
R3

∇× ω · ∇ |ω| × ωdx

+

∫
R3

|∇ω|2 |ω| dx+
2

3

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx
≥

∫
R3

|∇ × ω|2 |ω| dx− 1

2

∫
R3

(|∇ × ω|2 |ω|+ |∇ |ω| |2 |ω|)dx

+

∫
R3

|∇ω|2 |ω| dx+
4

9

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx
=

1

2

∫
R3

|∇ × ω|2 |ω| dx+
1

2

∫
R3

|∇ω|2 |ω| dx+
4

9

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx.
Combining (2.1) and (2.2), it follows that

1

3

d

dt

∫
R3

(|u|3 + |ω|3)dx+
4

9
(µ+ κ)

∫
R3

∣∣∣∇ |u| 32 ∣∣∣2 dx+
4

9
(γ + κ)

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx
+ (µ+ κ)

∫
R3

|∇u|2 |u| dx+ (γ +
κ

2
)

∫
R3

|∇ω|2 |ω| dx

+
κ

2

∫
R3

|∇ × ω|2 |ω| dx+ 2κ
∫
R3

|ω|3 dx

≤
∣∣∣∣∫

R3

∇π · u |u| dx
∣∣∣∣+ κ

∫
R3

|ω| |u| |∇u| dx+ κ
∫
R3

|u| |ω| |∇ω| dx

= I + J +K, (2.3)

where we have use the following identities∫
R3

∇× ω · u |u| dx = −
∫
R3

|u|ω · ∇ × udx−
∫
R3

ω · ∇ |u| × udx,∫
R3

∇× u · ω |ω| dx = −
∫
R3

|ω|u · ∇ × ωdx−
∫
R3

u · ∇ |ω| × ωdx,
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and the facts that

|∇ × u| ≤ |∇u| and |∇ |u|| ≤ |∇u| .

Then we shall estimate the above terms I, J and K one by one. For J , by using
the Hölder inequality and the Young inequality

J ≤ κ
∥∥∥|ω| |u| 12 ∥∥∥

L2

∥∥∥|u| 12 |∇u|∥∥∥
L2

≤ (µ+ κ)

4

∥∥∥|u| 12 |∇u|∥∥∥2
L2

+ C
∥∥∥|ω| |u| 12 ∥∥∥2

L2

≤ (µ+ κ)

4

∥∥∥|u| 12 |∇u|∥∥∥2
L2

+ C ‖ω‖2L3

∥∥∥|u| 12 ∥∥∥2
L6

≤ (µ+ κ)

4

∥∥∥|u| 12 |∇u|∥∥∥2
L2

+ C ‖ω‖2L3 ‖u‖L3

≤ (µ+ κ)

4

∥∥∥|u| 12 |∇u|∥∥∥2
L2

+ C(
2

3
‖ω‖3L3 +

1

3
‖u‖3L3). (2.4)

Similarly, we can estimate K as

K ≤ κ
∥∥∥|u| |ω| 12 ∥∥∥

L2

∥∥∥|ω| 12 |∇ω|∥∥∥
L2

≤ γ

2

∥∥∥|ω| 12 |∇ω|∥∥∥2
L2

+ C(
2

3
‖u‖3L3 +

1

3
‖ω‖3L3). (2.5)

To estimate the term involving ∇π, Taking ∇∇· on both sides of the equation (1.1),
it follows that π = (−∆)−1∇ · (u · ∇u), where we have used the facts ∇ · u = 0 and
∇ · (∇× ω) = 0. Then the Calderón-Zygmund inequality implies that

‖∇π‖Ls =
∥∥∇(−∆)−1∇ · (u · ∇u)

∥∥
Ls ≤ C ‖u · ∇u‖Ls , for all 1 < s <∞.

Case 1. If 1 < r ≤ 9
7 , Hölder’s inequality and Young’s inequality gives

I ≤
∫
R3

|∇π| |u|2dx =

∫
R3

|∇π|
2r

9−5r |∇π|
9−7r
9−5r |u|2dx

≤ ‖∇π‖
2r

9−5r

Lr ‖∇π‖
9−7r
9−5r

L
9
5
‖u‖2L9

≤ C ‖∇π‖
2r

9−5r

Lr ‖u · ∇u‖
9−7r
9−5r

L
9
5

∥∥∥|u| 32 ∥∥∥ 4
3

L6

≤ C ‖∇π‖
2r

9−5r

Lr

∥∥∥|u| 12 (|u| 12 |∇u|)∥∥∥ 9−7r
9−5r

L
9
5

∥∥∥∇ |u| 32 ∥∥∥ 4
3

L2

≤ C ‖∇π‖
2r

9−5r

Lr

∥∥∥|u| 12 ∥∥∥ 9−7r
9−5r

L18

∥∥∥|u| 12 |∇u|∥∥∥ 9−7r
9−5r

L2

∥∥∥∇ |u| 32 ∥∥∥ 4
3

L2

= C ‖∇π‖
2r

9−5r

Lr

∥∥∥∇ |u| 32 ∥∥∥ 9−7r
3(9−5r)

L2

∥∥∥|u| 12 |∇u|∥∥∥ 9−7r
9−5r

L2

∥∥∥∇ |u| 32 ∥∥∥ 4
3

L2

= C ‖∇π‖
2r

9−5r

Lr

∥∥∥∇ |u| 32 ∥∥∥ 15−9r
9−5r

L2

∥∥∥|u| 12 |∇u|∥∥∥ 9−7r
9−5r

L2

≤
(
C ‖∇π‖

2r
3(r−1)

Lr

) 3(r−1)
9−5r

(∥∥∥∇ |u| 32 ∥∥∥2
L2

) 15−9r
2(9−5r)

(∥∥∥|u| 12 |∇u|∥∥∥2
L2

) 9−7r
2(9−5r)

≤ C ‖∇π‖
2r

3(r−1)

Lr +
(µ+ κ)

9

∥∥∥∇ |u| 32 ∥∥∥2
L2

+
(µ+ κ)

4

∥∥∥|u| 12 |∇u|∥∥∥2
L2
. (2.6)
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Now we can insert (2.4), (2.5) and (2.6) into (2.3), it follows that

1

3

d

dt

∫
R3

(|u|3 + |ω|3)dx+
(µ+ κ)

3

∫
R3

∣∣∣∇ |u| 32 ∣∣∣2 dx+
4

9
(γ + κ)

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx
+

(µ+ κ)

2

∫
R3

|∇u|2 |u| dx+
(γ + κ)

2

∫
R3

|∇ω|2 |ω| dx

+
κ

2

∫
R3

|∇ × ω|2 |ω| dx+ 2κ
∫
R3

|ω|3 dx

≤ C ‖∇π‖
2r

3(r−1)

Lr + C(‖ω‖3L3 + ‖u‖3L3),

which implies that

d

dt

∫
R3

(|u|3 + |ω|3)dx ≤ C

 ‖∇π‖
2r

3(r−1)

Lr

‖u‖3L3 + ‖ω‖3L3

+ 1

(‖u‖3L3 + ‖ω‖3L3

)
.

Then the bounds for L3−norms of u and ω follow from standard Gronwall’s in-
equality. By standard arguments of continuation of local solutions, we conclude
that the solutions (u(x, t), ω(x, t)) can be extended beyond t = T .

Case 2. If 9
7 < r < 3, we start from (2.3) and I can be estimated as

I ≤
∫
R3

|∇π| |u|2 dx

≤ ‖∇π‖Lr

∥∥∥|u|2∥∥∥
L

r
r−1

= ‖∇π‖Lr

∥∥∥|u| 32 ∥∥∥ 4
3

L
4r

3(r−1)

≤ C ‖∇π‖Lr

(∥∥∥|u| 32 ∥∥∥ 7r−9
4r

L2

∥∥∥|u| 32 ∥∥∥ 9−3r
4r

L6

) 4
3

≤ C ‖∇π‖Lr ‖u‖
7r−9
2r

L3

∥∥∥∇ |u| 32 ∥∥∥ 3−r
r

L2

=

(
C ‖∇π‖

2r
3(r−1)

Lr ‖u‖
7r−9

3(r−1)

L3

)1− 3−r
2r
(∥∥∥∇ |u| 32 ∥∥∥2

L2

) 3−r
2r

≤ C ‖∇π‖
2r

3(r−1)

Lr ‖u‖
7r−9

3(r−1)

L3 +
(µ+ κ)

9

∥∥∥∇ |u| 32 ∥∥∥2
L2
. (2.7)

Inserting (2.7), (2.5) and (2.6) into (2.3) yields

1

3

d

dt

∫
R3

(|u|3 + |ω|3)dx+
(µ+ κ)

3

∫
R3

∣∣∣∇ |u| 32 ∣∣∣2 dx+
4

9
(γ + κ)

∫
R3

∣∣∣∇ |ω| 32 ∣∣∣2 dx+ 2κ
∫
R3

|ω|3 dx

+
3

4
(µ+ κ)

∫
R3

|∇u|2 |u| dx+
(γ + κ)

2

∫
R3

|∇ω|2 |ω| dx+
κ

2

∫
R3

|∇ × ω|2 |ω| dx

≤ C ‖∇π‖
2r

3(r−1)

Lr ‖u‖
7r−9

3(r−1)

L3 + C(‖ω‖3L3 + ‖u‖3L3)

≤ C ‖∇π‖
2r

3(r−1)

Lr

(
‖u‖

7r−9
3(r−1)

L3 + ‖ω‖
7r−9

3(r−1)

L3

)
+ C(‖ω‖3L3 + ‖u‖3L3)
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which implies that

d

dt

∫
R3

(|u|3 + |ω|3)dx

≤ C ‖∇π‖
2r

3(r−1)

Lr

(
‖u‖

7r−9
3(r−1)

L3 + ‖ω‖
7r−9

3(r−1)

L3

)
+ C(‖ω‖3L3 + ‖u‖3L3)

= C
‖∇π‖

2r
3(r−1)

Lr

‖u‖
2r

3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3

(
‖u‖

2r
3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3

)(
‖u‖

7r−9
3(r−1)

L3 + ‖ω‖
7r−9

3(r−1)

L3

)
+ C(‖ω‖3L3 + ‖u‖3L3)

= C
‖∇π‖

2r
3(r−1)

Lr

‖u‖
2r

3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3

×
(
‖u‖3L3 + ‖ω‖3L3 + ‖u‖

2r
3(r−1)

L3 ‖ω‖
7r−9

3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3 ‖u‖
7r−9

3(r−1)

L3

)
+ C(‖ω‖3L3 + ‖u‖3L3)

= C
‖∇π‖

2r
3(r−1)

Lr

‖u‖
2r

3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3

×
(
‖u‖3L3 + ‖ω‖3L3 +

(
‖u‖3L3

) 2r
9(r−1)

(
‖ω‖3L3

) 7r−9
9(r−1)

+
(
‖ω‖3L3

) 2r
9(r−1)

(
‖u‖3L3

) 7r−9
9(r−1)

)
+ C(‖ω‖3L3 + ‖u‖3L3)

≤ C
‖∇π‖

2r
3(r−1)

Lr

‖u‖
2r

3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3

(
3 ‖u‖3L3 + 3 ‖ω‖3L3

)
+ C(‖ω‖3L3 + ‖u‖3L3)

= C

 ‖∇π‖
2r

3(r−1)

Lr

‖u‖
2r

3(r−1)

L3 + ‖ω‖
2r

3(r−1)

L3

+ 1

 (‖u‖3L3 + ‖ω‖3L3)

which implies the deserved estimate by Gronwall’s inequality. Then, by using the
standard arguments of the continuation of local solutions, it is easy to conclude that
the solution (u(x, t), ω(x, t)) can be smoothly extended beyond T . This completes
the proof of Theorem 1.1. 2
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