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Abstract. This paper treats the concept of practical uniform h-stability for
such perturbed dynamical systems as an extension of practical uniform expo-
nential stability. We present a converse Lyapunov theorem and we give su�-
cient conditions that guarantee practical uniform h-stability for a time-varying
perturbed system using the Gronwall-Bellman inequality and Lyapunov's the-
ory. Some examples are introduced to illustrate the applicability of the main
results.

1. Introduction

A dynamical system is a set of objects or phenomena related to them and arti-
�cially isolated from the outside world. Its theoretical modeling requires a precise
knowledge of the phenomena involved in the system and an aptitude to represent
them by mathematical equations. The stability of dynamical systems is the most
important criterion in systems design (see [6, 14, 16, 20]). The primary objective
of a Lyapunov function is to analyze the behavior of trajectories of a dynamical
system and how this behavior is preserved after perturbations (see [10, 15]). It
gives su�cient conditions for stability, asymptotic stability, and so on. There are
theorems which establish ([5, 17, 22]), at least conceptually, that for many of Lya-
punov stability theorems the given conditions are indeed necessary. Such theorems
are usually called converse theorems. In [18, 19], Pinto introduced a new notion
of stability called h-stability (see [2, 3, 13]) with the intention of obtaining results
about stability for weakly stable di�erential systems under some perturbations. The
various notions of h-stability include several types of known stability properties as
uniform stability, exponential asymptotic stability and uniform Lipschitz stability.
However, in practice we may only need to stabilize a system into the region of a
phase space where the system may oscillate near the state in which the implemen-
tation is still acceptable. This concept is called practical stability (see [1, 4, 7, 12])
which is very useful for studying the asymptotic behavior of the system in which the
origin is not necessarily an equilibrium point. This work introduces a new notion
of practical stability called practical h-stability (see [11]). The most important and
useful tools for investigating stability and h-stability properties behavior of solu-
tions of dynamical equations are Gronwall's inequalities and Lyapunov's techniques.
In mathematics, Gronwall's inequalities [8] allow one to bound a function that is
known to satisfy a certain di�erential or integral inequality by the solution of the
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corresponding di�erential or integral equation. They can be use as a technique to
prove existence and uniqueness of solutions. The Lyapunov method, which states
that if one can �nd an appropriate Lyapunov function then the system has some
stability properties, attracted the attention of many researchers for studying the
stability of nonlinear systems. In [16], the author de�ned a converse theorem for
exponential stability by requiring a continuously di�erentiable Lyapunov function
and the researchers in [1] developed it in the practical case. In addition, in [21],
a converse theorem of Lyapunov for asymptotic stability of the averaged system is
proved in which that the semi-global practical asymptotic stability is implied by the
existence of a Lyapunov function whose derivative along the �ow of the averaged
system is negative de�nite. They showed that if the averaged system is globally
uniformly asymptotically stable, then the origin of the original time-varying system
is semi-globally practically asymptotically stable. The main result of this research
is to establish a converse theorem when the nonlinear system is semi-globally prac-
tically uniformly h-stable by constructing a continuously di�erentiable Lyapunov
function which guarantees certain properties. Then, it is used to obtain necessary
and su�cient conditions to ensure the practical h-stability of dynamical systems.
The novelty here is to investigate the practical approach of perturbed systems by
Lyapunov's technique and the Gronwall-Bellman inequality. This paper is orga-
nized as follows. In Section 2, some de�nitions and notations are summarized and
the system description is given. In Section 3, we study the global practical uni-
form h-stability of certain perturbed systems using a generalization of Gronwall's
inequality. In addition, we investigate the global practical uniform h-stability of
system (2.1) using Lyapunov's direct method. We state the main of this work in
Section 4. Finally, some special cases and examples are provided to illustrate the
obtained results in Section 5. Our conclusion is presented in Section 6.

2. Notations and De�nitions

Throughout this paper, we deal with R+ = [0,+∞[ and Rn the n-dimensional
Euclidean space. Let ‖·‖ be the corresponding Euclidean norm. Let C(R+×Rn,Rn)
be the space of all continuous functions from R+ ×Rn to Rn. Let Rn×n be the set
of all n× n real matrices.

In this paper, we are interested to show necessary and su�cient conditions for
practical uniform h-stability of solution for the following non-autonomous di�eren-
tial system

ẋ(t) = f(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (2.1)

where t ∈ R+ is the time, x ∈ Rn is the state and f ∈ C(R+ × Rn,Rn) is locally
Lipschitz in x, uniformly in t. Let x(t) = x(t, t0, x0) denote by the unique solution
of system (2.1) throughout (t0, x0) ∈ R+ × Rn.

First, we start by presenting the notion of global uniform h-stability for system
(2.1) which is introduced by Pinto in [18]. Let h : R+ → R∗+ be a positive,
continuous and bounded function.

De�nition 2.1. The system (2.1) is said to be globally uniformly h-stable if there
exists c ≥ 1, such that for all t ≥ t0 and all x0 ∈ Rn

‖x(t)‖ ≤ c‖x0‖h(t)
h(t0)

·
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Now, we give the de�nition of practical h-stability which will be used in subse-
quent main results.

De�nition 2.2. Given σ > ρ > 0, the origin of system (2.1) is said to be (σ → ρ)h-
stable if
(1) for each r ∈ (0, σ) there exists a �nite number v(r) > 0, such that for all

t0 ∈ R+

‖x0‖ ≤ r ⇒ ‖x(t)‖ ≤ v(r), ∀ t ≥ t0;
and

(2) there exist c ≥ 1 and r > 0, such that for all t0 ∈ R+

‖x(t)‖ ≤ c‖x0‖h(t)
h(t0)

+ ρ, ∀ t ≥ t0, ∀ ‖x0‖ ≤ r.

The system (2.1) is said to be semi-globally practically uniformly h-stable if for all
numbers σ and ρ with ∞ > σ > ρ > 0, the system (2.1) is (σ → ρ)h-stable.

De�nition 2.3. The origin of system (2.1) is said to be globally practically uni-
formly h-stable if there exist c ≥ 1 and ρ > 0, such that for all t ≥ t0 and x0 ∈ Rn,
we have

‖x(t)‖ ≤ c‖x0‖h(t)
h(t0)

+ ρ. (2.2)

Remark 2.4.

(1) The practical uniform exponential stability is a particular case of practical
uniform h-stability, by taking h(t) = e−λt with λ > 0.

(2) The inequality (2.2) implies that x(t) will be globally uniformly bounded by a
small bound ρ > 0, that is, ‖x(t)‖ will be small for su�cient large t.

In this article, we will also investigate the global practical uniform h-stability of
time-varying nonlinear perturbed systems of the form

ẋ(t) = B(t)x(t) + ψ(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (2.3)

where B(·) is an n×n matrix whose entries are all real-valued continuous functions
of t ∈ R+ and ψ ∈ C(R+ × Rn,Rn) is locally Lipschitz in x, uniformly in t.
This system is seen as a perturbation of the nominal system

ẋ(t) = B(t)x(t), x(t0) = x0. (2.4)

The stability behavior of the origin as an equilibrium point for the linear time-
varying system (2.4) can be completely characterized in terms of the state transition
matrix R(t, t0) associated to B(·) as follows

x(t) = R(t, t0)x0, x0 ∈ Rn, t ≥ t0 ≥ 0.

The following lemma presents the global uniform h-stability of system (2.4) in terms
of R(t, t0).

Lemma 2.5 ([19]). The system (2.4) is globally uniformly h-stable if and only if

there exist c ≥ 1 and a positive continuous bounded function h on R+, such that for

all t0 ∈ R+

‖R(t, t0)‖ ≤
ch(t)

h(t0)
, ∀ t ≥ t0.



112 H. DAMAK, M. A. HAMMAMI, and A. KICHA

To study the practical approach behavior of solutions of certain perturbed sys-
tems, we need the following technical lemmas.

Lemma 2.6 (Gronwall-Bellman Inequality).
Let θ, γ : R+ → R be continuous functions and ϑ : R+ → R+ a function, such that

ϑ̇(t) ≤ θ(t)ϑ(t) + γ(t), ∀ t ≥ t0. (2.5)

Then, for all t0 ≥ 0, we have

ϑ(t) ≤ ϑ(t0) exp
(∫ t

t0

θ(τ)dτ
)
+

∫ t

t0

exp
(∫ t

s

θ(τ)dτ
)
γ(s)ds, ∀ t ≥ t0.

Proof. See appendix. �

Lemma 2.7 (Generalization of Gronwall's inequality).
Let θ be a non-negative function on R+, that satis�es the following integral inequal-
ity

θ(t) ≤ b+
∫ t

t0

$(s)θα(s)ds, b ≥ 0, α ≥ 0,

where $ is a non-negative continuous function for t ≥ t0 ≥ 0. For 0 ≤ α < 1, we
have

θ(t) ≤
[
b1−α + (1− α)

∫ t

t0

$(s)ds

] 1
1−α

.

Proof. See appendix. �

Lemma 2.8. Let a, b ≥ 0 and p ≥ 1. Then,

(a+ b)p ≤ 2p−1(ap + bp).

3. Global Practical Uniform h-stability

In this section, we investigate the global practical uniform h-stability of such
perturbed systems under di�erent conditions on the perturbed term using the gen-
eralization of Gronwall's inequality.

Let h : R+ → R∗+ be a positive, continuous and bounded function.

Theorem 3.1. Consider the perturbed system (2.3). The perturbation term ψ
satis�es the following condition:

‖ψ(t, x)‖ ≤ χ(t)‖x‖α + %(t), ∀ x ∈ Rn, ∀ t ≥ 0, 0 ≤ α < 1, (3.1)

where χ and % are non-negative continuous functions on R+ satisfying∫ t

0

%(s)

h(s)
ds ≤M1,

∫ t

0

χ(s)

h(s)
ds ≤M2, M1, M2 > 0, ∀ t ≥ 0. (3.2)

Suppose that the system (2.4) is globally uniformly h-stable, then the system (2.3)
is globally practically uniformly h-stable.

Proof. Let x(t) be the solution of system (2.3), then

x(t) = R(t, t0)x0 +

∫ t

t0

R(t, s)ψ(s, x(s))ds,
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where R(t, t0) is the state transition matrix of the linear system (2.4). Thus, from
the global uniform h-stability of system (2.4) and the condition (3.1), we obtain

‖x(t)‖ ≤ c‖x0‖h(t)
h(t0)

+ ch(t)

∫ t

t0

χ(s)‖x(s)‖α + %(s)

h(s)
ds.

Then,
‖x(t)‖
h(t)

≤ c
(
‖x0‖
h(t0)

+M1

)
+ c

∫ t

t0

χ(s)‖x(s)‖α

h(s)
ds.

Put, µ(t) =
‖x(t)‖
h(t)

to get

µ(t) ≤ c
(
µ(t0) +M1

)
+ c

∫ t

t0

χ(s)µ(s)α

h(s)1−α
ds.

By applying Lemma 2.7, we obtain for all t ≥ t0

µ(t) ≤
[(
cµ(t0) + cM1

)1−α
+ c(1− α)‖h‖α∞

∫ t

t0

χ(s)

h(s)
ds

] 1
1−α

,

with ‖h‖∞ = sup
t≥0
{h(t)}. Hence, by using Lemma 2.8, we get

µ(t) ≤ 2
α

1−α cµ(t0) + 2
α

1−α

(
c(1− α)M2

) 1
1−α ‖h‖

α
1−α
∞ + 2

α
1−α cM1.

We deduce that, for all t ≥ t0 and all x0 ∈ Rn the solution of system (2.3) satis�es

‖x(t)‖ ≤ b‖x0‖h(t)
h(t0)

+ ρ,

where b = 2
α

1−α c and ρ = 2
α

1−α

(
c(1− α)M2‖h‖∞

) 1
1−α

+ 2
α

1−α cM1‖h‖∞.
This �nishes the proof. �

Specializing the previous theorem, when χ(t) = 0 we obtain the following corollary.

Corollary 3.2. Suppose that the system (2.4) is globally uniformly h-stable where h
is decreasing on R+, then the system (2.3) is globally practically uniformly h-stable
under the condition on the perturbation term ψ is as follows:

‖ψ(t, x)‖ ≤ %(t), ∀ x ∈ Rn, ∀ t ≥ 0,

where % is a non-negative continuous integrable function on R+.

Next, we introduce the direct Lyapunov method in the following theorem, which
allows us to determine the global practical uniform h-stability of system (2.1) by
requiring the existence of Lyapunov functions that satisfy certain conditions.

Theorem 3.3. Assume that h is a positive, bounded, continuously di�erentiable

and decreasing function on R+. In addition, there exist constants numbers c1, c2, p >
0, a, η ≥ 0 and M > 0, such that∫ t

0

h(t)

h(s)
ds ≤M, ∀ t ≥ 0. (3.3)

Suppose that there exists a function W : R+×Rn → R+ continuously di�erentiable

satisfying the following properties.
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(1) c1‖x‖p ≤W (t, x) ≤ c2‖x‖p + a, (t, x) ∈ R+ × Rn,

(2)
∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x) ≤ h′(t)

h(t)
W (t, x) + η, (t, x) ∈ R+ × Rn.

Then, the system (2.1) is globally practically uniformly h
1
p -stable.

Proof. Let x(t) = x(t, t0, x0) be the solution of system (2.1) through (t0, x0) ∈
R+ × Rn. One has,

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x) ≤ h′(t)

h(t)
W (t, x) + η.

Using Lemma 2.6, we obtain for all t ≥ t0

W (t, x) ≤ W (t0, x0) exp

(∫ t

t0

h′(s)

h(s)
ds

)
+ η

∫ t

t0

exp

(∫ t

s

h′(τ)

h(τ)
dτ

)
ds

≤ W (t0, x0)
h(t)

h(t0)
+Mη.

It follows that, for all t ≥ t0 and all x0 ∈ Rn the solution of system (2.1) satis�es

‖x(t)‖ ≤
(
c2
c1
‖x0‖p

h(t)

h(t0)
+
Mη + a

c1

) 1
p

.

We discriminate two cases:
(1) If p > 1, then for all t ≥ t0 and all x0 ∈ Rn, we get

‖x(t)‖ ≤
(
c2
c1

) 1
p

‖x0‖
(
h(t)

h(t0)

) 1
p

+

(
Mη + a

c1

) 1
p

.

(2) If p ≤ 1, from Lemma 2.8, we obtain for all t ≥ t0 and all x0 ∈ Rn

‖x(t)‖ ≤ 2
1−p
p

(
c2
c1

) 1
p

‖x0‖
(
h(t)

h(t0)

) 1
p

+ 2
1−p
p

(
Mη + a

c1

) 1
p

.

The proof is completed. �

4. Converse Theorem

The purpose of this section is to establish a converse theorem in the case when
the origin is not an equilibrium point of the nonlinear system (2.1), but it is assumed
that there exists a non-negative constant f0, such that ‖f(t, 0)‖ ≤ f0, for all t ≥ 0.
In Theorem 4.2 that follows, we show under this assumption that there exists a
Lyapunov function W that satis�es conditions similar but not the same as those in
Theorem 3.3. We �rst state the following lemma which will be used later.

Lemma 4.1 ([9]). Consider the nonlinear system (2.1). Let φ(τ ; t, x) be a solution

of the system that starts at (t, x), and let φx(τ ; t, x) =
∂

∂x
φ(τ ; t, x) and suppose∥∥∥∥∂f∂x (t, x)

∥∥∥∥ ≤ L, where L is a positive constant. Then,

‖φx(τ ; t, x)‖ ≤ eL(τ−t). (4.1)
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Theorem 4.2. Consider the nonlinear system (2.1) with f is di�erentiable and

suppose the Jacobian matrix

[
∂f

∂x

]
is bounded on D, where D ⊂ Rn is an open

connected set that contains the origin. Let σ > ρ > 0 be given and suppose that the

trajectory of the system is (σ → ρ)h-stable where h is a decreasing function and h′

exists and is continuous on R+. Assume that there exists δ > 0, such that

h(t)

h(t+ δ)
≤ ζ, ζ > 0, ∀ t ≥ 0. (4.2)

Then, there exist a natural number p ≥ 2 and a Lyapunov functionW : R+×D → R
continuously di�erentiable that satisfy the following properties.

(i) c1‖x‖p ≤W (t, x) ≤ c2‖x‖p + a, (t, x) ∈ R+ ×D,

(ii)

∥∥∥∥∂W∂x (t, x)

∥∥∥∥ ≤ c3‖x‖p−1 + b, (t, x) ∈ R+ ×D,

(iii)
∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x) ≤ h′(t)

h(t)
W (t, x) + d, (t, x) ∈ R+ ×D,

for some positive constants c1, c2, c3, a, b and d.

Proof. Let φ(τ ; t, x) denote the solution of system (2.1) that starts at (t, x), that

is, φ(t; t, x) = x and let L > 0 denote the bound of the Jacobian matrix

[
∂f

∂x

]
. We

have,∣∣∣∣ ddτ φT (τ ; t, x)φ(τ ; t, x)
∣∣∣∣ =

∣∣2φT (τ ; t, x)f(τ, φ(τ ; t, x))∣∣
≤ 2‖φ(τ ; t, x)‖‖f(τ, φ(τ ; t, x))‖
= 2‖φ(τ ; t, x)‖‖f(τ, φ(τ ; t, x))− f(τ, 0) + f(τ, 0)‖
≤ 2L‖φ(τ ; t, x)‖2 + 2f0‖φ(τ ; t, x)‖,

which implies that

−2L‖φ(τ ; t, x)‖2 − 2f0‖φ(τ ; t, x)‖ ≤
d

dτ
φT (τ ; t, x)φ(τ ; t, x). (4.3)

Let, ϕ(τ) = −‖φ(τ ; t, x)‖. By using (4.3), we obtain (as in [16], Example 3.9, pp.
103�104) that

D+ϕ(τ) ≤ −Lϕ(τ) + f0,

such that

D+ϕ(t) = lim sup
T→0+

1

T

(
ϕ(t+ T )− ϕ(t)

)
.

By applying the comparison lemma (see [16], pp. 102�103), we conclude that(
‖x‖+ f0

L

)
e−L(τ−t) ≤ ‖φ(τ ; t, x)‖+ f0

L
·
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Now, using the fact that (λ1 + λ2)
n ≤ 2n(λn1 + λn2 ), for all n ∈ N∗ and λ1, λ2 ≥ 0,

we have [(
‖x‖+ f0

L

)
e−L(τ−t)

]p
=

(
‖x‖+ f0

L

)p
e−pL(τ−t)

≤
(
‖φ(τ ; t, x)‖+ f0

L

)p
≤ 2p‖φ(τ ; t, x)‖p + 2p

(
f0
L

)p
.

We deduce that,

‖φ(τ ; t, x)‖p +
(
f0
L

)p
≥ 1

2p

(
‖x‖+ f0

L

)p
e−pL(τ−t). (4.4)

De�ne the function W : R+ ×D → R+ by

W (t, x) = h(t)

∫ t+δ

t

1

h(τ)

((
φT (τ ; t, x)φ(τ ; t, x)

) p
2

+

(
f0
L

)p)
dτ,

where δ is a positive constant. On one side, we have

W (t, x) = h(t)

∫ t+δ

t

1

h(τ)

(
‖φ(τ ; t, x)‖p +

(
f0
L

)p)
dτ

≤ h(t)

∫ t+δ

t

1

h(τ)

((c‖x‖h(τ)
h(t)

+ ρ
)p

+

(
f0
L

)p)
dτ.

From Lemma 2.8 and the condition (4.2), we obtain

W (t, x) ≤ c2‖x‖p + a,

with c2 = 2pcpδ and a =
(
2pρp +

(
f0
L

)p)
ζ.

On the other side, using the fact (4.4), we obtain

W (t, x) ≥ 1

2p
h(t)

∫ t+δ

t

1

h(τ)

(
‖x‖+ f0

L

)p
e−pL(τ−t)dτ

≥ 1

2p

∫ δ

0

e−pLsds‖x‖p.

Hence,

W (t, x) ≥ c1‖x‖p,

with c1 =
1

2prL
(1− e−2rLδ). This proves the property (i).

We de�ne now the functions φt(τ ; t, x) and φx(τ ; t, x) as follows:

φt(τ ; t, x) =
∂φ

∂t
(τ ; t, x), φx(τ ; t, x) =

∂φ

∂x
(τ ; t, x).

To prove (ii), let

∂W

∂x
(t, x) = ph(t)

∫ t+δ

t

1

h(τ)
φT (τ ; t, x)p−1φx(τ ; t, x)dτ.
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It follows from Lemma 4.1 that∥∥∥∥∂W∂x (t, x)

∥∥∥∥ ≤ ph(t)

∫ t+δ

t

1

h(τ)

(
c‖x‖h(τ)
h(t)

+ ρ

)p−1
eL(τ−t)dτ

≤ 2p−1ph(t)

∫ t+δ

t

1

h(τ)

((c‖x‖h(τ)
h(t)

)p−1
+ ρp−1

)
eL(τ−t)dτ

=
2p−1cp−1p

L
(eLδ − 1)‖x‖p−1 + 2p−1ρp−1pζ

L
(eLδ − 1).

Hence, for all t ≥ t0, we get∥∥∥∥∂W∂x (t, x)

∥∥∥∥ ≤ c3‖x‖p−1 + b,

with c3 =
2p−1cp−1p

L
(eLδ − 1) and b =

2p−1ρp−1pζ

L
(eLδ − 1). Therefore, (ii) is

satis�ed.
The derivative of W along the trajectories of system (2.1) is given by

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x)

= h′(t)

∫ t+δ

t

1

h(τ)

(
‖φ(τ ; t, x)‖p +

(
f0
L

)p)
dτ

+
h(t)

h(t+ δ)
‖φT (t+ δ; t, x)‖p +

(
f0
L

)p
h(t)

h(t+ δ)
− ‖x‖p −

(
f0
L

)p
+ ph(t)

∫ t+δ

t

1

h(τ)

(
φT (τ ; t, x)

)p−1[
φt(τ ; t, x) + φx(τ ; t, x)f(t, x)

]
dτ.

One has, from [16]

φt(τ ; t, x) + φx(τ ; t, x)f(t, x) ≡ 0, ∀ τ ≥ t.
Then,

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x)

≤ h′(t)

h(t)
W (t, x) +

(
2pcp

(
h(t+ δ)

h(t)

)p−1
‖x‖p +

(
2pρp +

(
f0
L

)p)
ζ.

For each r ∈ (0, σ), there exists a �nite number v(r) > 0, such that ‖x0‖ ≤ r implies
that x(t) is de�ned and ‖x(t)‖ ≤ v(r). We deduce that,

∂W

∂t
(t, x) +

∂W

∂x
(t, x)f(t, x) ≤ h′(t)

h(t)
W (t, x) + d,

with d = (2pcp − 1)v(r)p +

(
2pρp +

(
f0
L

)p)
ζ, which proves (iii). The proof is

completed. �

Now, we apply the converse theorem to perturbed systems. We shall be interested in
the relation between the solution of the unperturbed system (2.1) and the solution
of the perturbed system

ẋ = f(t, x) + ψ(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (4.5)
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where f, ψ ∈ C(R+ ×D,D) are locally Lipschitz in x, uniformly in t. Precisely, we
give su�cient conditions to study that if the nominal system (2.1) is (σ → ρ)h-stable

then the perturbed system (4.5) is semi-globally practically uniformly h
1
p -stable.

Before proposing our theorem, we introduce the following assumption:
(A) The perturbation term ψ satis�es:

‖ψ(t, x)‖ ≤ χ(t)‖x‖+ %(t), ∀ x ∈ D, ∀ t ∈ R+,

where χ and % are non-negative continuous integrable functions on R+.

Theorem 4.3. Assume that assumption (A) holds. We consider the perturbed

system (4.5), where the Jacobian matrix

[
∂f

∂x

]
is bounded on D, where D ⊂ Rn is

an open connected set that contains the origin. Let σ > ρ > 0 be given and suppose

that the system (2.1) is (σ → ρ)h-stable where h is a decreasing function and h′

exists and is continuous on R+, the condition (4.2) is satis�ed and there exists a

positive constant M, such that∫ t

0

h(t)

h(s)
ds ≤M, ∀ t ≥ 0. (4.6)

Then, the system (4.5) is semi-globally practically uniformly h
1
p -stable, where p ≥ 2

is a natural number.

Proof. By Theorem 4.2, there exist functionsW and h satisfying these three prop-
erties (i)− (iii). The derivative of W along the trajectories of system (4.5) satis�es

∂W

∂t
(t, x) +

∂W

∂x
(t, x)

(
f(t, x) + ψ(t, x)

)
≤ h′(t)

h(t)
W (t, x) + d+

∥∥∥∥∂W∂x (t, x)

∥∥∥∥ ‖ψ(t, x)‖
≤

[h′(t)
h(t)

+
c3
c1
χ(t)

]
W (t, x) + c3%(t)‖x‖p−1 + bχ(t)‖x‖+ b%(t) + d.

For each r ∈ (0, σ), there exists a �nite number v(r) > 0, such that ‖x0‖ ≤ r implies
that x(t) is de�ned and ‖x(t)‖ ≤ v(r). Then,

∂W

∂t
(t, x) +

∂W

∂x
(t, x)

(
f(t, x) + ψ(t, x)

)
≤

[h′(t)
h(t)

+
c3
c1
χ(t)

]
W (t, x) + c3%(t)v(r)

p−1 + bχ(t)v(r) + b%(t) + d

=
[h′(t)
h(t)

+
c3
c1
χ(t)

]
W (t, x) +

(
A+ b

)
%(t) +Bχ(t) + d,

where A = c3v(r)
p−1 and B = b+ v(r). Hence, by Lemma 2.6, we get for all t ≥ t0

W (t, x) ≤ W (t0, x0)
h(t)

h(t0)
exp

(
c3
c1

∫ t

t0

χ(s)ds

)
+

∫ t

t0

h(t)

h(s)
exp

(
c3
c1

∫ t

s

χ(τ)dτ

)
×
((
A+ b

)
%(s) +Bχ(s) + d

)
ds

≤ W (t0, x0)
h(t)

h(t0)
e
c3
c1
M1 + e

c3
c1
M1
(
A+ b

)
M2 + e

c3
c1
M1BM1 + e

c3
c1
M1dM,
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with M1 =

∫ ∞
0

χ(s)ds and M2 =

∫ ∞
0

%(s)ds. Therefore, for all t ≥ t0 and all

x0 ∈ D the solution of system (2.3) satis�es the inequality

‖x(t)‖ ≤
(
c2
c1

) 1
p

e
c3
pc1

M1‖x0‖
(
h(t)

h(t0)

) 1
p

+ e
c3
pc1

M1
(
A+ b

) 1
p

(
M2

c1

) 1
p

+ e
c3
pc1

M1

(
BM1

c1

) 1
p

+ e
c3
pc1

M1

(
dM + a1

c1

) 1
p

,

which implies that the system (4.5) is semi-globally practically uniformly h
1
p -stable.

This ends the proof. �

5. Examples

The purpose of this section is to illustrate the main results by given some nu-
merical examples and simulations.

Example 5.1. Consider the following system:
ẋ1 = −2tx1 + γx2 +

e−t
2

(1 + t2)2
(x21 + x22)

1
8 +

e−t
2

(1 + t2)
√

1 + x21

ẋ2 = −γx1 − 2tx2 +

√
2te−t

2

(1 + t2)2
(x21 + x22)

1
8 ,

(5.1)

where x = (x1, x2)
T ∈ R2, γ > 0 and t ∈ R+. The above mentioned example is

exactly the system (2.3), with

B(t) =

(
−2t γ
−γ −2t

)
, ψ(t, x) =


e−t

2

(1 + t2)2
(x21 + x22)

1
8 +

e−t
2

(1 + t2)
√

1 + x21√
2te−t

2

(1 + t2)2
(x21 + x22)

1
8

 .

The state transition matrix of the linear system is given by

R(t, t0) = e−(t
2−t20)ϕ(t− t0), ∀ t ≥ 0,

with

ϕ(t) =

(
cos γt sin γt
− sin γt cos γt

)
.

Therefore, the linear system ẋ = B(t)x is globally uniformly h-stable with c = 1

and h(t) = e−t
2

is a positive continuous bounded function on R+.
On the other side,

‖ψ(t, x)‖ ≤ 2e−t
2

(1 + t2)
3
2

‖x‖ 1
4 +

√
2e−t

2

1 + t2
, ∀ x ∈ R2, ∀ t ∈ R+.

Put, χ(t) =
2e−t

2

(1 + t2)
3
2

and %(t) =

√
2e−t

2

1 + t2
, which are non-negative continuous func-

tions on R+ with the conditions (3.1) and (3.2) are satis�ed. Then, all hypotheses
of Theorem 3.1 are ful�lled and the perturbed system (5.1) is globally practically

uniformly h-stable with α =
1

4
·
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The trajectory of system (5.1) with respect the initial state
(
x1(0), x2(0)

)
= (1, 1)

and γ = 1, is depicted in Figure 1.

Time (s)

0 1 2 3 4 5 6 7 8 9 10

x

-0.5

0

0.5

1

1.5

2

x
1

x
2

Time (s)

9.6658 9.6658 9.6658 9.6658 9.6658 9.6658 9.6658

x

×10-6

-1.5

-1

-0.5

0

0.5

1

1.5 x
1

x
2

Figure 1. The trajectory of the state x(t) = (x1, x2) of system

(5.1).

Example 5.2. We consider the scalar equation:

ẋ = − 2 + t

5(1 + t)
x+

arctan(t)e−t

1 + x4
, x ∈ R, t ≥ 0. (5.2)

Put, h(t) =
e−t

1 + t
is a positive, continuous, bounded and decreasing function on

R+ which satis�es (3.3). Let, W (t, x) = x5, that is continuously di�erentiable on
R+ × R. Therefore, all hypotheses of Theorem 3.3 are ful�lled with c1 = c2 =

1, a = 0, η =
5π

2
and p = 5. Consequently, the system (5.2) is globally practically

uniformly h
1
5 -stable.

For simulation of system (5.2) we select the initial state x(0) = 2. The result is
depicted in Figure 2.

Time (s)

0 2 4 6 8 10 12 14 16 18 20

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 2. The trajectory of the state x(t) of system (5.2).
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Example 5.3. We consider the scalar system

ẋ = −2 + t

1 + t
x+

e−t

1 + |x|
+

te−2t

1 + x2
x+

1

1 + t2
, x ∈ R, t ≥ 0. (5.3)

The above example is exactly the system (4.5) with

f(t, x) = −2 + t

1 + t
x+

e−t

1 + |x|
, ψ(t, x) =

te−2t

1 + x2
x+

1

1 + t2
,

where f is di�erentiable and the Jacobian matrix

[
∂f

∂x

]
is bounded on R. The

nominal system ẋ = f(t, x) is globally practically uniformly h-stable with c = 1

and h(t) =
e−t

1 + t
is a positive continuous bounded function on R+ and veri�es

the conditions (4.2) and (4.6). Moreover, it is easy to check the assumption (A)
with χ(t) = te−2t and %(t) =

1

1 + t2
that are non-negative continuous integrable

functions on R+. Consequently, from Theorem 4.3 we conclude the semi-global
practical uniform h-stability of system (5.3).
For simulation of system (5.3) we select the initial state x(0) = 0. The result is
depicted in Figure 3.

Time (s)

0 1 2 3 4 5 6 7 8 9 10

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3. The trajectory of the state x(t) of system (5.3).

6. Conclusion

We have investigated some new conditions for global practical uniform h-stability
of perturbed di�erential equations. A converse Lyapunov theorem for semi-global
practical uniform h-stability of nonlinear time-varying systems has been established.
We have illustrated this use in the practical h-stability of perturbed systems. Fi-
nally, some illustrative examples were given to demonstrate the validity of the
results.

Appendix

Proof of Lemma 2.6. We write (2.5) as

ϑ̇(t)− θ(t)ϑ(t) ≤ γ(t), ∀ t ≥ t0.
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One has,

d

ds

(
ϑ(s) exp

(
−
∫ s

t0

θ(τ)dτ

))
≤ γ(s) exp

(
−
∫ s

t0

θ(τ)dτ

)
, s ≥ t0.

Then, for all t0 ∈ R+∫ t

t0

d

ds

(
ϑ(s) exp

(
−
∫ s

t0

θ(τ)dτ

))
≤
∫ t

t0

γ(s) exp

(
−
∫ s

t0

θ(τ)dτ

)
ds, ∀ t ≥ t0,

and it follows that

ϑ(t) exp

(
−
∫ t

t0

θ(τ)dτ

)
− ϑ(t0) ≤

∫ t

t0

γ(s) exp

(
−
∫ s

t0

θ(τ)dτ

)
ds.

Therefore,

ϑ(t) ≤ ϑ(t0) exp
(∫ t

t0

θ(τ)dτ

)
+

∫ t

t0

γ(s) exp

(∫ t

s

θ(τ)dτ

)
ds, ∀ t ≥ t0.

�

Proof of Lemma 2.7. Let,

ϕ(t) =

∫ t

t0

$(s)xα(s)ds, 0 ≤ α < 1, t ≥ t0.

Then,

ϕ̇(t) ≤ $(t)
(
b+ ϕ(t)

)α
, ∀ t ≥ t0.

Therefore, for all t ≥ t0

x(t) ≤ b+ ϕ(t) ≤
(
b1−α + (1− α)

∫ t

t0

$(s)ds

) 1
1−α

.

�
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