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Abstract. We show a necessary and sufficient condition for any ordinal number

to be a Polish space. We also prove that for each countable Polish space, there
exists a countable ordinal number that is an upper bound for the first compo-

nent of the Cantor-Bendixson characteristic of every compact countable subset

of the aforementioned space. In addition, for any uncountable Polish space,
for every countable ordinal number and for each nonzero natural number, we

show the existence of a compact countable subset of this space such that its

Cantor-Bendixson characteristic equals the previous pair of numbers. Finally,
for every Polish space, we determine the cardinality of the partition, up to

homeomorphisms, of the set of all compact countable subsets of the aforesaid

space.

1. Introduction

First, we give some notations, definitions and basic facts that will be useful
throughout this paper.

Definition 1.1 (Metrizable space). A topological space (E, τ) is called metrizable
if there exists a metric on E that generates τ .

By ∼ we denote homeomorphism between topological spaces. We have that the

topological space (E, τ) is metrizable if and only if there is a metric space (Ẽ, d)

such that E ∼ Ẽ. In fact, if f : E → Ẽ is a homeomorphism from E onto Ẽ, we
can take the metric dE on E given by

dE : E × E −→ R
(x, y) 7−→ dE(x, y) = d(f(x), f(y)).

Definition 1.2 (Completely metrizable space). We say that a topological space
(E, τ) is completely metrizable if there exists a metric d on E that generates τ and
(E, d) is a complete metric space.

Furthermore, we see that the topological space (E, τ) is completely metrizable

if and only if there exists a complete metric space (Ẽ, d) such that E ∼ Ẽ.

Definition 1.3 (Polish space). A topological space (E, τ) is Polish if it is separable
and completely metrizable.

We use P(D) and |D| to symbolize, respectively, the power set and the cardinality
of the setD. If (Y, τ) is a topological space, thenKY stands for the set of all compact
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countable subsets of Y , where a countable set is either a finite set or a countably
infinite set, and KY := KY /∼ represents the set of all the equivalence classes, up to
homeomorphisms, of elements of KY . If (G, d) is a metric space, x ∈ G and r > 0,
we write B(x, r) to indicate the open ball centered at x with radius r > 0. The
notation OR represents the class of all ordinal numbers. In addition, ω denotes
the set of all natural numbers and ω1 stands for the set of all countable ordinal
numbers. In this manuscript, for all λ ∈ OR, we consider its usual order topology
given by the next topological basis ([5, p.66])

{(β, γ) : β, γ ∈ OR, β < γ ≤ λ} ∪ {[0, β) : β ∈ OR, β ≤ λ}.

The following result puts in evidence the relationship between Polish spaces and
ordinal numbers.

Proposition 1.1. Let α be an ordinal number. Then, α is a Polish space if and
only if α is countable.

Proof. First, we suppose that the ordinal number α is a Polish space. We assume,
by contradiction, that α is uncountable. Thus, ω1 ≤ α. Hence,

ω1 ⊆ α.

Since α is a Polish space, we have that α is a separable space. Then, ω1 is also
separable, contradicting the fact that ω1 is not a separable space ([10, p.114]).
Therefore, α is countable.

Conversely, let α be a countable ordinal number. By Theorem 2.1 and Lemma
3.6 in [1], there exists a countable compact set K ⊆ R such that

K ∼ ωα + 1.

Since K ⊆ R is compact, we see that K is a complete metric space. Then, ωα + 1
is a completely metrizable space. Since α ≤ ωα, we have that

α = [0, α[ ⊆ ωα ⊆ ωα + 1.

Thus, α is an open subset of a completely metrizable space. By Theorem 1.1 in [8],
α is also a completely metrizable space. An alternative proof of this last result may
be performed, making use of the, inductively provable, fact that α embeds as a
closed subset of R, which is completely metrizable. Moreover, since α is countable,
we obtain that α is separable. Therefore, α is a Polish space. �

In the following section, we begin by briefly reviewing the definitions of Cantor-
Bendixson’s derivative and Cantor-Bendixson’s characteristic. Theorem 2.1 and
Propositions 2.2 and 2.3 imply that for every metrizable space (E, τ), the func-

tion C̃BE , given in Remark 2.2, is well-defined and injective. Lemma 2.4 is used
in the proof of Proposition 2.5, where it is demonstrated that for all countable
Polish spaces, one can find a countable ordinal number that is greater than or
equal to the first component of the Cantor-Bendixson characteristic of any com-
pact countable subset of the previously mentioned space. Moreover, Proposition 2.6
and Lemma 2.7 are technical results, for T1 and T2 topological spaces, respectively,
that will be used in the subsequent proofs. Proposition 2.8 is useful in the proof of
Theorem 2.9, which asserts that for every nonempty perfect complete metric space,
for any countable ordinal number, and for each nonzero natural number, there is
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a compact countable subset of the space under consideration such that its Cantor-
Bendixson characteristic is equal to the above couple of numbers. Theorem 2.9
and Lemma 2.10 imply Theorem 2.11, where it is shown that for every uncountable
Polish space, (E, τ), for each countable ordinal number α, and for all p ∈ ω r {0},
there exists K ∈ KE such that CBE(K) = (α, p). Lastly, Theorem 2.12 gives the
principal result of this paper, where for any Polish space, we obtain the cardinal-
ity of the set of all the equivalence classes, up to homeomorphisms, of compact
countable subsets of the forenamed space.

2. On the Cardinality of the Equivalence Classes, up to
Homeomorphisms, of Compact Countable Subsets of a Polish Space

The next definition was first introduced by G. Cantor in [3].

Definition 2.1 (Cantor-Bendixson’s derivative). Let C be a subset of a topological
space. For a given ordinal number δ ∈ OR, we define, using Transfinite Recursion,
the δ-th derivative of C, written C(δ), as follows:
• C(0) = C,
• C(ε+1) = (C(ε))′, for every ordinal number ε,

• C(λ) =
⋂
θ<λ

C(θ), for any limit ordinal number λ 6= 0,

where D′ denotes the derived set of D, i.e., the set of all limit points (or accumu-
lation points) of the subset D.

We now give the following definition.

Definition 2.2 (Cantor-Bendixson’s characteristic). Let A be a subset of a topo-
logical space, (X, τ), such that there exists an ordinal number γ ∈ OR in such a
way that A(γ) is finite. We say that (α, p) ∈ OR × ω is the Cantor-Bendixson
characteristic of A if α is the smallest ordinal number such that A(α) is finite and
|A(α)| = p. In this case, we write CBX(A) = (α, p).

The next theorem (see Theorem 1.1 in [2], where its proof can also be found)
was first introduced by G. Cantor in [4] for n-dimensional Euclidean spaces.

Theorem 2.1. Let (X, τ) be a Hausdorff space. For all K ∈ KX , there exists
α ∈ ω1 such that K(α) is a finite set.

The following comment is Remark 1.2 in [2].

Remark 2.1. The last theorem implies that if (X, τ) is a Hausdorff space and
K ∈ KX , then CBX(K) is well-defined and, in addition, CBX(K) ∈ ω1 × ω.

The following two results and their proofs can also be found in [2] (see Proposi-
tions 3.1 and 3.2 in [2]).

Proposition 2.2. Let (X, τ) be a T1 topological space. For all K1,K2 ∈ KX such
that K1 ∼ K2, we have that CBX(K1) = CBX(K2).

Proposition 2.3. Let (E, d) be a metric space. For all K1,K2 ∈ KE such that
CBE(K1) = CBE(K2), we get K1 ∼ K2.
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Remark 2.2. By Theorem 2.1 and Propositions 2.2 and 2.3 above, we obtain that
for each metrizable space (E, τ), we can define the following injective function

C̃BE : KE −→ ω1 × ω
[K] 7−→ C̃BE([K]) = CBE(K).

Definition 2.3 (Scattered topological space). We say that a topological space
(D, τ) is scattered if every nonempty closed set A of D has at least one point
which is isolated in A.

The next lemma will be used in the proof of Proposition 2.5 below.

Lemma 2.4. Let (E, d) be a countable complete metric space. Then, there is a
countable ordinal number α such that

E(α) = ∅.

Proof. Since E is a countable complete metric space, we see that E is scattered ([7,
p.415]). Then, there exists an ordinal number α ≤ |E| such that E(α) = ∅ ([9,
p.139]). As E is a countable set, α ∈ ω1. �

Proposition 2.5. Let (E, τ) be a countable Polish space. Then, there exists a
countable ordinal number α such that for all K ∈ KE,

K(α) = ∅.

Proof. By the last lemma, there is α ∈ ω1 such that

E(α) = ∅.

Let K ∈ KE . Since K ⊆ E, we obtain

K(α) ⊆ E(α) = ∅.

Hence, K(α) = ∅. �

Remark 2.3. As a consequence of the last proposition, we see that for every count-
able Polish space, there is a countable ordinal number that is an upper bound for the
first component of the Cantor-Bendixson characteristic of any compact countable
subset of the foregoing space.

The next result is Lemma 2.2 in [2], where its proof is also given.

Proposition 2.6. Let (X, τ) be a T1 topological space. For all K and F closed
subsets of X such that K ∩ F = K ∩ int(F ), where int(F ) is the set of all interior
points of F , and for every α ∈ OR, we have that

(K ∩ F )(α) = K(α) ∩ F. (2.1)

The next lemma is a known result, which is given for convenience of the reader,
and it will be needed in the proof of Proposition 2.8 and Theorem 2.9 below.

Lemma 2.7. Let (E, τ) be a Hausdorff topological space and let n ∈ ω. If F0, . . . , Fn
are closed subsets of E, then for every ordinal number α ∈ OR,(

n⋃
k=0

Fk

)(α)

=

n⋃
k=0

F
(α)
k .
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Proof. We proceed in a similar way as in the proof of Lemma 2.1 in [1]. �

The following proposition will be used in the proof of Theorem 2.9 below, and it
shows some properties related to the compact countable subsets of any nonempty
perfect (i.e., it coincides with its derived set) completely metrizable space.

Proposition 2.8. Let (P, τ) be a nonempty perfect completely metrizable space.
For each countable ordinal number α, for every z ∈ P , and for any r > 0, there
exists a set K ∈ KP such that

K ⊆ B(z, r) and K(α) = {z}.

Proof. Let d be a compatible metric on E that generates τ and such that (E, d)
is a complete metric space. We will use Transfinite Induction.
• We first examine the case α = 0. For all z ∈ P , and for every r > 0, we see

that K := {z} satisfies the required properties.
• Now, let α be a countable ordinal number such that for any x ∈ P , and for all

ε > 0, there is a set K̃ ∈ KP such that K̃ ⊆ B(x, ε) and K̃(α) = {x}. We will
show that for all z ∈ P , and for every r > 0, there exists a set K ∈ KP such
that K ⊆ B(z, r) and K(α+1) = {z}. In order to do this, let z ∈ P and r > 0.
Since P is perfect, we have that z is an accumulation point of P . Then, there
is a sequence (xn)n∈ω in P r {z} such that (d(xn, z))n∈ω is strictly decreasing
and d(xn, z)→ 0 as n→ +∞. In addition, this last sequence can be taken in
such a way that for all n ∈ ω, d(xn, z) < r. For all n ∈ ω, we take

rn := d(xn, z),

and

εn := 1
2 min{rn−1 − rn, rn − rn+1} > 0,

where

r−1 := r.

Using now the induction hypothesis and the Axiom of Countable Choice, there
is a family {Kn ∈ KP : n ∈ ω} such that for every n ∈ ω,

Kn ⊆ B(xn, εn) and K(α)
n = {xn}.

Furthermore, for all n ∈ ω, we have that

Kn ⊆ B(xn, εn) ⊆ B(z, rn−1) and Kn ⊆ P rB(z, rn+1).

We now define

K :=
⊎
n∈ω

Kn ] {z}.

We see that K satisfies the following properties.
– K ⊆ B(z, r), since for all n ∈ ω, Kn ⊆ B(z, rn−1) ⊆ B(z, r).
– K is countable, since it is the countable union of countable sets.
– K is compact. In fact, let {Ai ∈ τ : i ∈ I} be an open cover of K. There

is j ∈ I such that z ∈ Aj . Since Aj is open, there exists N ∈ ω such
that for all n ∈ ω,

n > N =⇒ Kn ⊆ B(z, rn−1) ⊆ Aj .
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On the other hand, since D :=

N⊎
n=0

Kn is a finite union of compact sets,

it follows that D is also a compact set. Then, we can extract a finite
open subcover, {Ai ∈ τ : i ∈ J}, of D. Hence, {Ai ∈ τ : i ∈ J ∪ {j}} is
a finite open subcover of K.

– K(α+1) = {z}. In fact, for all n ∈ ω, we consider the set

Fn := P rB
(
z, rn+rn+1

2

)
.

Claim 1: for all n, k ∈ ω such that k ≤ n, we have that Kk ⊆ Fn.
In fact, let n, k ∈ ω be such that k ≤ n. Let x ∈ Kk ⊆ B(xk, εk). We

assume, by contradiction, that x ∈ B
(
z, rn+rn+1

2

)
. Since k ≤ n, we see

that x ∈ B
(
z, rk+rk+1

2

)
. Thus,

rk := d(z, xk) ≤ d(z, x) + d(x, xk)

<
rk + rk+1

2
+ εk

≤ rk + rk+1

2
+
rk − rk+1

2
= rk,

which is an absurd.
Claim 2: for all n, k ∈ ω such that k > n, we obtain that Kk ∩ Fn = ∅.
In fact, let n, k ∈ ω be such that k > n. We suppose, for the sake of a
contradiction, that there exists x ∈ Kk ∩ Fn. Thus, x ∈ Kk ⊆ B(xk, εk)

and x ∈ Fn := P rB
(
z, rn+rn+1

2

)
. Hence,

rn + rn+1

2
≤ d(z, x) ≤ d(z, xk) + d(xk, x)

< rk + εk ≤ rk +
rk−1 − rk

2

=
rk−1 + rk

2
,

which contradicts the fact that (rm)m ∈ ω∪{−1} is a strictly decreasing
sequence.
Using Claims 1 and 2, for all n ∈ ω, we get

K ∩ Fn =
⊎
k∈ω

(Kk ∩ Fn) ] ({z} ∩ Fn) =

n⊎
k=0

Kk.

Claim 3: for all n ∈ ω, K ∩ Fn = K ∩ int(Fn).
In fact, let n ∈ ω. Since int(Fn) ⊆ Fn, we see that K∩ int(Fn) ⊆ K∩Fn.

To show the other implication, let x ∈ K ∩ Fn =

n⊎
k=0

Kk. Then, there

exists k ∈ {0, . . . , n} such that x ∈ Kk and

d(x, z) ≥ rn + rn+1

2
.
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We have that d(x, z) > rn+rn+1

2 . Indeed, in the contrary case,

rk := d(xk, z) ≤ d(xk, x) + d(x, z)

< εk +
rn + rn+1

2
.

As k ≤ n, we get rn ≤ rk. Thus,

rk <
rk − rk+1

2
+
rk + rn+1

2

= rk −
rk+1

2
+
rn+1

2
.

Therefore,
rk+1 < rn+1.

Thus, k + 1 > n+ 1, giving a contradiction. Hence,

ε := d(x, z)− rn + rn+1

2
> 0.

We assert that B(x, ε) ⊆ Fn. In fact, let y ∈ B(x, ε). We suppose, by

contradiction, that y ∈ B
(
z, rn+rn+1

2

)
. Then,

d(x, z) ≤ d(x, y) + d(y, z)

< ε+
rn + rn+1

2

= d(x, z)− rn + rn+1

2
+
rn + rn+1

2
= d(x, z),

which is a contradiction. Therefore, x ∈ int(Fn). Thus, Claim 3 follows.
By using now Proposition 2.6 and Lemma 2.7, for all n ∈ ω, we get

K(α+1) ∩ Fn = (K ∩ Fn)(α+1)

=

(
n⊎
k=0

Kk

)(α+1)

=

n⊎
k=0

K
(α+1)
k

=

n⊎
k=0

{xk}′

=

n⊎
k=0

∅

= ∅.
Thus, for all n ∈ ω,

K(α+1) ⊆ P r Fn = B
(
z, rn+rn+1

2

)
.

Hence,

K(α+1) ⊆
⋂
n∈ω

B
(
z, rn+rn+1

2

)
= {z}.
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On the other hand, by using again Proposition 2.6 and Lemma 2.7, for
all n ∈ ω, we have that

K(α) ∩ Fn = (K ∩ Fn)(α)

=

(
n⊎
k=0

Kk

)(α)

=

n⊎
k=0

K
(α)
k

=

n⊎
k=0

{xk}.

Then, for all n ∈ ω, xn ∈ K(α). Since (xn)n∈ω converges to z as
n → +∞, and since (xn)n∈ω is a sequence in K(α) r {z}, we see that
z ∈ K(α+1). Therefore,

K(α+1) = {z}.
• Finally, let λ 6= 0 be a countable limit ordinal number such that for all β ∈ OR

with β < λ, we have that for all x ∈ P , and for every ε > 0, there exists a set

K̃ ∈ KP such that K̃ ⊆ B(x, ε) and K̃(β) = {x}. Next, we will show that for
all z ∈ P , and for each r > 0, there is a set K ∈ KP such that

K ⊆ B(z, r) and K(λ) = {z}.
Let z ∈ P and r > 0. Since P is a perfect set, z ∈ P ′. Thus, there ex-
ists a sequence (xn)n∈ω in P r {z} satisfying that (d(xn, z))n∈ω is a strictly
decreasing sequence of real numbers converging to 0, and such that for all
n ∈ ω, d(xn, z) < r. On the other hand, there is a strictly increasing sequence
(βn)n∈ω in ω1 such that

sup{βn : n ∈ ω} = λ.

Thus, for all n ∈ ω, βn < λ. Proceeding now in a similar fashion to the
previous case, we take for all n ∈ ω,

rn := d(xn, z),

and
εn := 1

2 min{rn−1 − rn, rn − rn+1} > 0,

with
r−1 := r.

Applying the hypothesis and by the Axiom of Countable Choice, there exists
a family {Kn ∈ KP : n ∈ ω} such that for all n ∈ ω,

Kn ⊆ B(xn, εn) and K(βn)
n = {xn}.

Furthermore, for all n ∈ ω,

Kn ⊆ B(xn, εn) ⊆ B(z, rn−1) and Kn ⊆ P rB(z, rn+1).

We now define
K :=

⊎
n∈ω

Kn ] {z}.
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Proceeding in a similar manner to the preceding case, we have that K satisfies
the following properties.

– K ⊆ B(z, r).
– K is countable.
– K is compact.
– K(λ) = {z}. Actually, for all n ∈ ω, we take the set

Dn := P rB
(
z, rn+rn+1

2

)
.

Proceeding similarly as in the above case, for all n ∈ ω, we get

K ∩Dn =

n⊎
k=0

Kk and K ∩Dn = K ∩ int(Dn).

By Proposition 2.6 and Lemma 2.7, for all n ∈ ω, we obtain that

K(λ) ∩Dn = (K ∩Dn)(λ)

=

(
n⊎
k=0

Kk

)(λ)

=

n⊎
k=0

K
(λ)
k

=

n⊎
k=0

∅

= ∅,

where we have used the fact that for all k ∈ ω,

K
(λ)
k ⊆ K(βk+1)

k = {xk}′ = ∅.

We note that the last inclusion is a consequence of Remark 1.1 in [2].
Then, for all n ∈ ω,

K(λ) ⊆ P rDn = B
(
z, rn+rn+1

2

)
.

Thus,

K(λ) ⊆
⋂
n∈ω

B
(
z, rn+rn+1

2

)
= {z}.

In order to show the other inclusion, let β < λ. Then, there is N ∈ ω
such that β < βN . Hence, for all n ∈ {N,N + 1, . . .}, β < βn. By using
again Remark 1.1 in [2], for all n ∈ {N,N + 1, . . .}, we get

{xn} = K(βn)
n ⊆ K(β)

n ⊆ K(β).

Since (xN+n)n∈ω is a sequence in K(β) that converges to z as n→ +∞,
and since K(β) is a closed subset of P , we have that z ∈ K(β). So,

z ∈
⋂
β<λ

K(β) =: K(λ).

Hence,

K(λ) = {z}.
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Therefore, the result follows for any countable ordinal number. �

The following result will be employed in the proof of Theorem 2.11 below.

Theorem 2.9. Let (P, d) be a nonempty perfect complete metric space. Then, for
every countable ordinal number α, and for each p ∈ ω r {0}, there exists K ∈ KP
such that

CBP (K) = (α, p).

Proof. Let α be a countable ordinal number and let p ∈ ω r {0}. We take x ∈
P = P ′ 6= ∅. Since x is an accumulation point of P , there is an infinite number of
elements of P inside the open ball B(x, 1). Therefore, P is an infinite set. Thus, P
contains a subset

A := {xk ∈ P : k ∈ {0, . . . , p− 1}},
with p elements, where for all i, j ∈ {0, . . . , p − 1} such that i 6= j, xi 6= xj . We
now define

r := 1
2 min{d(xi, xj) : i, j ∈ {0, . . . , p− 1}, i 6= j} > 0.

By Proposition 2.8, for every k ∈ {0, . . . , p− 1}, there is Kk ∈ KP such that

Kk ⊆ B(xk, r) and K
(α)
k = {xk}.

We now take the set

K :=

p−1⊎
k=0

Kk.

K satisfies the following properties:
• K is countable, since it is the finite union of countable sets.
• As K is the finite union of compact sets, K is compact.
• K(α) = A. In fact, by using Lemma 2.7, we see that

K(α) =

p−1⊎
k=0

K
(α)
k =

p−1⊎
k=0

{xk} =: A.

Thus, |K(α)| = |A| = p.
Hence, K ∈ KP and CBP (K) = (α, p). �

The next lemma will be used in the proof of Theorem 2.11 below.

Lemma 2.10. Let (E, τ) be an uncountable separable metrizable space. There
exists a nonempty perfect set P ⊆ E.

Proof. Let P be the set of all condensation points of E, i.e., the points such that
every open neighborhood of them contains uncountably many elements of E. Since
E is a separable metrizable space, we see that E is second countable. Moreover,
since |E| > ℵ0 and E is a second countable topological space, it follows that P is
nonempty ([5, p.180]). Furthermore, using the fact that E is a metrizable space,
we have that P ′ = P ([6, p.252]). Hence, P is a nonempty perfect set. �

The next theorem generalizes Corollary 2.1 in [1], which is valid on the real line,
and it will be used in the proof of Theorem 2.12, below, that is the main result of
this paper.
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Theorem 2.11. Let (E, τ) be an uncountable Polish space. Then, for any countable
ordinal number α, and for every p ∈ ω r {0}, there exists K ∈ KE such that

CBE(K) = (α, p).

Proof. Let α be a countable ordinal number and let p ∈ ω be such that p 6= 0.
By the previous lemma, there exists P ⊆ E such that P is a nonempty perfect
set. Thus, by Theorem 2.9, there exists a compact countable set K ⊆ P such that
CBE(K) = (α, p). Since K is a compact countable subset of P ⊆ E, we have that
K ∈ KE . This completes the proof. �

Summarizing what we have proved so far, in this section, we obtain the following
theorem that completely determines the cardinality of all the equivalence classes,
up to homeomorphisms, of elements of the set of all compact countable subsets of
a Polish space, according to the cardinality of this space.

Theorem 2.12. Let (E, τ) be a Polish space.
(i) If E is finite, then

|KE | = |E|+ 1.

(ii) If E is countably infinite, then

|KE | = |E| = ℵ0.

(iii) If E is uncountable, then

|KE | = ℵ1.

Proof. Let (E, τ) be a Polish space and let d be a compatible Polish metric on E
that generates τ and such that (E, d) is a complete metric space. We consider the
following cases, taking into account the cardinality of the set E.

(i) Let E be a finite set such that |E| = n ∈ ω. Every subset of E is also a
finite set and hence, it is a compact set. Then, KE = P(E). Moreover, for
all K ∈ KE , CBE(K) = (0, |K|). Thus,

|KE | ≤ n+ 1.

On the other hand, since for all m ∈ {0, . . . , n}, there is Fm ⊆ E such that
|Fm| = m, it follows that |KE | = n+ 1. Therefore,

|KE | = |E|+ 1.

(ii) We now consider the case when E is a countable infinite set, i.e., |E| = ℵ0.
By Proposition 2.5, there is a countable ordinal number α such that for all
K ∈ KE , K(α) = ∅. Thus, for every K ∈ KE , if CBE(K) = (β, p), then
β < α+ 1. Hence,

C̃BE(KE) ⊆ (α+ 1)× ω.
Consequently,

|KE | ≤ |(α+ 1)× ω| = |α+ 1||ω| = |ω||ω| = ℵ0.

On the other hand, since every finite subset of E is a compact set and since
for every natural number, there is at least a subset of E with cardinality
equals the previous natural number, we have that |KE | ≥ ℵ0. Therefore,
|KE | = ℵ0, i.e.,

|KE | = |E| = ℵ0.
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(iii) We suppose now that E is uncountable. By Theorem 3.3 in [2], we see
that |KE | ≤ ℵ1. On the other hand, by Theorem 2.11, one obtains that
for all α ∈ ω1 and for every p ∈ ω r {0}, there exists F ∈ KE such that
CBE(F ) = (α, p). Then,

ω1 × (ω r {0}) ⊆ C̃BE(KE).

Thus,
|KE | ≥ |ω1 × (ω r {0})| = |ω1| = ℵ1.

As a consequence,
|KE | = ℵ1.

This completes the proof of the theorem. �
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