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Abstract. For x ∈ R, the ordinary Hermite polynomial Hk(x) can be written

Hk(x) = E
[
(x+ iN)k

]
=

k∑
j=0

(k
j

)
xk−j ijE

[
Nj
]
,

where i =
√
−1 and N is a unit normal random variable. We prove the

reciprocal relation

xk =

k∑
j=0

(k
j

)
Hk−j(x) E

[
Nj
]
.

A similar result is given for the multivariate Hermite polynomial.

1. Introduction

By Withers [10], for x ∈ R, the ordinary Hermite polynomial Hk(x) can be
written

Hk(x) = E
[
(x+ iN)

k
]

=

k∑
j=0

(
k

j

)
xk−j ijE

[
N j
]
,

where i =
√
−1 and N is a unit normal random variable. This result and its

multivariate analog [10] have received useful applications in several areas: seasonal
modeling of multivariate distributions of Metocean parameters in marine operations
[6]; expansions for multivariate diffusions [1]; stochastic response of non-linear os-
cillation system under random excitation [16]; an algorithm for computing the
multivariate Faa di Bruno’s formula [3].

The aim of this short note is to prove the reciprocal relation

xk =

k∑
j=0

(
k

j

)
Hk−j(x) E

[
N j
]

and its multivariate analog. That is, Hk(x), xj can be replaced by xk, Hj(x) if all
signs are made positive. This allows any polynomial in x to be easily written as a
linear combination of Hj(x).

For multivariate moments, cumulants and Hermite polynomials, there are two
notations in use. For example, for X ∈ Rp, a random vector, one can denote
E [X1Xp] by m1,0,...,0,p or by m1,p and E

[
X1X

2
3

]
by m1,0,2,...,0 or by m1,3,3. We

shall call them the sub form and the super form. The sub form has to deal with
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the zeros but that is easy for p = 2 or 3. Let N be the non-negative integers. For
x ∈ Rp and k, j ∈ Np, set

xk = xk1
1 · · ·xkp

p , k! = k1! · · · kp!, and

(
k

j

)
=

k!

j!(k− j)!
.

Then the sub form of the moment is mk = E
[
Xk
]
, and similarly for cumulants and

Hermite polynomials. It is used, for example, by Stuart and Ord [9], Withers [10],
and for Charlier-Edgeworth expansions for the simpler case of a sample mean, by
Bhattacharya and Ghosh [2] and Withers and Nadarajah [15].

For the super forms, suppose that j1, . . . , jr ∈ N and k ≤ r. We use the shorthand
notation k—r for a suffix jk, . . . , jr. Set

x1—r = xj1,...,jr = xj1 · · ·xjr .
The super form of the general moment of X ∈ Rp is

m1—r = mj1,...,jr = E [Xj1 · · ·Xjr ] = E [X1—r] ,

and similarly for cumulants and Hermite polynomials.
Now suppose that X ∼ Np (0p,V), a normal random p-vector with zero means,

covariance V, and density φV(x) say. For x ∈ Rp, set

y = V−1x, Y = V−1X ∼ Np

(
0p,V

−1
)
,
(
V j,k

)
= V−1.

In shorthand notation, we set

V 1—r = V j1,...,jr = E [Y1—r] =
∑
(p
r)

V j1,j2 · · ·V jr−1,jr (1.1)

for r even, where we use the convention that for f1—r = fj1,...,jr ,
∑
(p
r)

f1—r sums

over all
(
p
r

)
permutations of j1, . . . , jr giving distinct terms.

Set ∂x = ∂/∂x. The sub form of the multivariate Hermite polynomial is

Hk = Hk(x,V) = φV(x)−1
(
− ∂x

)k
φV(x)

= E
[
(y + iY)k

]
=

∑
0p≤j≤k

(
k

j

)
yk−jE

[
(iY)j

]
(1.2)

by [10]. For example, if p = 2,

Hk1,k2 = E
[
(y + iY)

k1

1 (y + iY)
k2

2

]
=
∑(

k1
j1

)(
k2
j2

)
yk1−j1
1 yk2−j2

2 E
[
(iY1)

j1 (iY2)
j2
]

summed over 0 ≤ j1 ≤ k1, 0 ≤ j2 ≤ k2. Its super form is

H1—r = Hj1,...,jr (x,V) = φV(x)−1
(
− ∂xj1

)
· · ·
(
− ∂xjr

)
φV(x) = E

[
r∏

k=1

(y + iY)jk

]
=

∑
0≤s≤r/2

(−1)s
∑
(r
s)

y1—(r−2s)V
(r−2s+1)—r

= y1—r −
∑
(r
2)

y1—(r−2)V
(r−1)—r +

∑
(r
4)

y1—(r−4)V
(r−3)—r − · · ·
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and follows from (1.2).
As we saw for p = 2, the use of (1.2) is more messy. We could write say H1—1

rather than H1 for Hj1 but this seems pedantic as the context makes it clear
whether Hj1 is meant. See Section 2 of [10] for their bi-orthogonality and [15] for
their application to the multivariate Charlier differential series. Both these use the
sub forms.

Section 2 contains the main result, namely Equation (2.2). Section 3 introduces
the multivariate modified Hermite polynomial. Possible extensions are discussed in
Section 4.

2. Main Result

In this section, we prove a reciprocal relation giving y1—r in terms of multivariate
Hermite polynomials. The exponential generating function (egf) forHk = Hk(x,V)
is ∑

k≥0p

Hktk/k! = E
[
et
′(y+iY)

]
= et

′yE
[
eit
′Y
]

for t,x ∈ Rp. The coefficients of tk in these three terms are Hk/k!, yk/k! and
E
[
(iY)k

]
/k!. So, taking the coefficient of tk gives

Hk/k! = yk/k!⊗ E
[
(iY)k

]
/k! (2.1)

which implies (1.2), where

ar ⊗ br =
∑

0p≤k≤r

akbr−k,

the discrete multivariate convolution. Substituting (1.1) gives the result of [10].
For t ∈ Rp,

1 = et
′V−1t/2e−t′V−1t/2 = E

[
et
′Y
]
E
[
eit
′Y
]
.

Multiplying by et
′y gives

et
′y = E

[
et
′y+it′Y

]
E
[
et
′Y
]
.

Therefore

yr/r! = Hr/r!⊗ E [Yr] /r!

and hence

yr =
∑

0p≤k≤r

Hk E
[
Yr−k

]
. (2.2)

As a result, we can swap Hk and yk in (1.2) if we make all signs positive. The
same is true if we use their super forms.
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3. The Modified Hermite Polynomials

Closely related are the modified Hermite polynomials. In the univariate case
these were introduced by Fisher [5]. They are

H∗
k(x) = e−x2/2Dkex

2/2 = i−kHk(ix) = ikHk(−ix) (3.1)

for k ≥ 0, D = d/dx, and x ∈ R. That is, H∗
k = H∗

k(x) is Hk(x) with all its signs
made positive. Withers and McGavin [11] gave the simpler formula

H∗
k = E

[
(x+N)k

]
, k ≥ 0, (3.2)

and other formulas for it, and applied to find E [(x+N)−n], n ≥ 0. For applications
to repeated integrals of the univariate normal density, see Withers and Nadarajah
[12, 13, 14].

We define the modified multivariate Hermite polynomial in sub form as

H∗
k = H∗

k(x,V) = φV(x)
(
− ∂x

)k
φV(x)−1

= E
[
(y + Y)k

]
=

∑
0p≤j≤k

(
k

j

)
yk−jE

[
Yj
]

(3.3)

for x ∈ Rp, y = V−1x and k ∈ Np. We define multivariate Hermite polynomial in
super form as

H1—r
∗ = Hj1,...,jr

∗ (x,V) = φV(x)
(
− ∂j1

)
· · ·
(
− ∂jr

)
φV(x)−1

= E

[
r∏

s=1

(y + Y)js

]
=

∑
0≤s≤r/2

∑
(r
s)

y1—(r−2s)V
(r−2s+1)—r

= y1—r +
∑
(r
2)

y1—(r−2)V
(r−1)—r +

∑
(r
4)

y1—(r−4)V
(r−3)—r + · · · . (3.4)

That is, (3.4) is the multivariate Hermite polynomial with all signs made positive.
We have not seen (3.4) before in the literature. They should be useful for extending
the applications of H∗

n(x) in Fisher [5] and Withers and Nadarajah [12, 13, 14] to
their multivariate versions. H∗

k has egf∑
k≥0p

H∗
ktk/k! = E

[
et
′(y+Y)

]
= et

′yE
[
et
′Y
]

for t,x ∈ Rp. By a similar argument to that in Section 2, the reciprocal relation
holds; that is, one can swap H∗

k and yk in (3.3) if signs are made to alternate.
Similarly, one can swap H1—r

∗ and y1—r in (3.4) if signs are made to alternate.

4. Extensions

A natural question is whether Hk(x) = E
[
(x+ iN)

k
]

can be extended for ran-

dom variables other than the unit normal random variable. Nadarajah [7] showed

that if Z is a symmetric stable random variable then E
[
(x+ iZ)

k
]

is a generalized

Hermite polynomial due to Djordjevic [4]. Nadarajah [8] showed that if Z is a Stu-

dent’s t random variable then E
[
(x+ iZ)

k
]

is a modified Chebyshev polynomial.
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However, such representations for general random variables do not appear to be
possible. For example, if Z is a uniform [−a, a] random variable then

E
[
(x+ iZ)

k
]

=
(x+ ai)k+1 − (x− ai)k+1

2ai(k + 1)
.
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