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Abstract. Two constructions are described: one gives soluble groups of derived
length 4, the other uses groups acting on a rooted tree.

To what extent is a finitely generated residually finite (f.g.r.f.) group determined
by its finite quotients? This question can be formulated in various ways, see for
example [GZ]. The family of all finite quotients of a group G is determined by its

inverse limit, the profinite completion Ĝ; following [GZ] let us define the genus of
an f.g.r.f. group G to be the set of isomorphism classes of f.g.r.f. groups H such

that Ĥ ∼= Ĝ. If G is abelian, the genus is a singleton; if G is nilpotent, the genus
is finite, a deep result of P. F. Pickel [P1]; if G is metabelian the genus can be
countably infinite [P2].

Uncountable genera (in fact uncountably many such) were first constructed by
Pyber [P]: in that case the finite quotients are products of distinct alternating
groups. The only other examples (to our knowledge) are due to Nekrashevych [N]:
here the finite quotients are 2-groups. (Added in proof : since the first version of this
paper was submitted, a construction similar to ours in §2 has been cleverly used by
Kionke and Schesler [KS] to provide examples of both amenable and non-amenable
groups having the same profinite completion.)

It struck us that the constructions introduced in [KKN] and in [S] could be
adapted to yield uncountable genera.

Those of the first kind are soluble: indeed this is the first example of an un-
countable genus of f.g. soluble groups. Our groups have derived length four. They
couldn’t be metabelian, like Pickel’s groups, because there are only countably many
f.g. metabelian groups; in fact our proof is more elementary than Pickel’s approach,
which depends on the theory of Picard groups. Whether a genus of f.g. soluble
groups of derived length 3 could be uncountable seems an interesting question.

Those of the second kind, like Nekrashevych’s groups, are branch groups. The
method is easier than his, however: using perfect groups in place of 2-groups gives
one cheap access to the relevant ‘congruence subgroup property’ (explained below).

Both constructions actually yield uncountably many distinct uncountable genera;
we shall not spell this out but it is implicit in the proofs.

1. Soluble Groups

Let G be the permutational wreath product C2 oC2 oC∞, a three-generator soluble
group of derived length 3. We shall use the (easy) fact that G is residually finite.

The key result is
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Proposition 1. There is a family of 2ℵ0 pairwise non-isomorphic, residually finite
cyclic ZG-modules all having the same finite images.

If these modules are Mα, α ∈ X, the corresponding split extensions Γα = MαoG
all have isomorphic profinite completions. They are all quotients of

Γ∗ = ZGoG = Z oG;

if Ma = ZG/Jα then Γα ∼= Γ∗/Kα where Kα = Jα.1 < ZG o G. For each α ∈ X
the set of β ∈ X such that Γβ ∼= Γα is countable, since there are only countably
many epimorphisms from the 4-generator group Γ∗ to the countable group Γα. It
follows that the groups Γα, α ∈ X lie in 2ℵ0 isomorphism classes. Thus we may
infer

Theorem 2. There are 2ℵ0 pairwise non-isomorphic 4-generator residually finite
soluble groups of derived length 4 with the same finite images. They are all quotients
of Z o (C2 o C2 o C∞).

Let us set up some notation. Let V be a vector space over F2 with basis
{ei, fi | i ∈ Z}. Let a ∈ GL(V ) be the automorphism which swaps e0 with f0

and fixes the other basis vectors. Let t ∈ GL(V ) be the automorphism such that
eit = ei+1 and fit = fi+1 for each i ∈ Z. Then 〈a, t〉 generate a copy of C2 o C∞
in GL(V ) and we identify G with V o 〈a, t〉 ≤ V o GL(V ). Note that G contains

the elementary abelian subgroup 〈ai | i ∈ Z〉 where ai = at
i ∈ GL(V ) is the

automorphism of order 2 which swaps ei with fi and fixes the other basis vectors.
For λ ∈ Y := {0, 1}N we define the sequence cλ = (ci)i∈N by

c2n−1 = en, c2n = fn if λ(n) = 0

c2n−1 = fn, c2n = en if λ(n) = 1,

and an ascending chain of subgroups of V by

Hλ,i = 〈e0, f0, e−1, f−1, . . . , e−i, f−i, c1, . . . , ci〉.

The following is then clear:

Lemma 3. (i) V =
⋃∞
i=1Hλ,i.

(ii) For each α, β ∈ Y and each n ∈ N there is an element g = g(α, β, n) ∈
〈a1, . . . , an〉 < G such that Hg

α,i = Hβ,i for i = 1, 2, . . . , n.

Fix an infinite sequence of distinct primes (pi)i∈N. We now define a ZG-module
Mλ for each λ ∈ Y . For clarity, the subscript λ will sometimes be suppressed. Let

Uλ,i = Ui = FpiG/(Hi − 1)FpiG ∼= Fpi ⊗FpiHi FpiG;

this is the right permutation FpiG module on the right cosets {Hig | g ∈ G} of Hi

in G, and we fix the module generator

ui = 1 + (Hi − 1)FpiG.

Now Mλ is defined to be the cyclic ZG-submodule of
∏∞
i=1 Ui generated by uλ =

(u1, u2, . . .). Thus

Mλ
∼= ZG/Jλ
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where

Jλ = annZG(uλ)

=

∞⋂
i=1

((Hλ,i − 1)ZG+ piZG) .

Since each Hi is finite and G is residually finite, Hi is closed in the profinite
topology of G. Thus the annihilator in FpiG of ui, namely (Hi − 1)FpiG, is the
intersection of finite-codimension right ideals of the form (L−1)FpiG (here L ranges
over the subgroups of finite index in G that contain Hi); hence each Ui is residually
finite as a G-module. It follows that

∏∞
i=1 Ui is also a residually finite G-module,

and then so is its submodule Mλ.

Lemma 4. Let γ, β ∈ Y and let N = NG ≤ V . If NHγ,i = NHβ,i for all i then
the G-modules Mγ/Mγ(N − 1) and Mβ/Mβ(N − 1) are isomorphic.

Proof. It will suffice to prove the (stronger) statement

Jγ + (N − 1)ZG = Jβ + (N − 1)ZG. (1)

Let x ∈ N. Then for some k we have x ∈ Hγ,i and x ∈ Hβ,i for all i > k. Then
uγ,i(x− 1) = 0 and uβ,i(x− 1) = 0 for every i > k. It follows that for λ = γ, β,

uλ(x− 1) =
∑k

i=1
uλ,i(x− 1) ∈

⊕
i
Uλ,i(N − 1) <

∞∏
i=1

Uλ,i.

Thus Jλ + (N − 1)ZG maps uλ into
⊕

i Uλ,i(N − 1) = D, say.
Let Iλ denote the annihilator in ZG of uλ modulo D. Suppose z ∈ Iλ. Then

uλz = (uλ,isi)i

with each si ∈ (N − 1)ZG, and sj = 0 for all j > m, say. By the preceding
paragraph, there exists k such that uλ,isj = 0 for each j ≤ m and all i > k. Now
we choose integers qi such that qi ≡ δij (mod pj) for i, j = 1, . . . , k. Taking r =∑k
i=1 qjsj we have

uλ,ir = uλ,isi if i ≤ k (2)

uλ,ir = 0 if i > k. (3)

Thus uλz = uλr so z ∈ Jλ + r ⊆ Jλ + (N − 1)ZG.
It follows that Iλ = Jλ + (N − 1)ZG. Thus it remains to show that Iγ = Iβ .
Now let r ∈ Iγ . Then (2) and (3) hold (with γ for λ), for some k and some

si ∈ (N − 1)ZG.
(3) is equivalent to

r ∈ (Hγ,i − 1)ZG+ piZG ∀i > k.

This implies

r ∈
⋂
i>k

((V − 1)ZG+ piZG) = (V − 1)ZG

which in turn implies that for some k1 we have

r ∈ (Hβ,i − 1)ZG ∀i > k1. (4)
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In (2), we may enlarge k arbitrarily by setting si = 0 for finitely many values of
i > k; so we may assume that k ≥ k1. Now (2) is equivalent to

r ∈ (Hγ,i − 1)ZG+ (N − 1)ZG+ piZG
= (NHγ,i − 1)ZG+ piZG
= (NHβ,i − 1)ZG+ piZG (i ≤ k).

Together with (4), this shows that (2) and (3) hold with β for λ, and so r ∈ Iβ .
The result follows by symmetry. �

Now fix α, β ∈ Y . For any λ ∈ Y , every finite G-module image of Mλ is an image
of Mλ/Mλ(N − 1) for some subgroup N = NG of finite index in V . There exists
k such that Hα,iN = Hβ,iN = V for all i > k, and there exists g = g(α, β, k) ∈ G
such that Hg

α,i = Hβ,i for 1 ≤ i ≤ k. We can specify γ ∈ Y so that Hγ,i = Hg
α,i for

all i. Then Hγ,iN = Hβ,iN for all i, and Lemma 4 gives

Mγ

Mγ(N − 1)
∼=

Mβ

Mβ(N − 1)
.

On the other hand,

Mγ
∼=

ZG
Jγ

=
ZG
g−1Jα

∼=
ZG
Jα
∼= Mα.

It follows that Mα/Mα(N − 1) ∼= Mβ/Mβ(N − 1). We infer that Mα and Mβ

have the same finite images as G-modules.

Lemma 5. The map λ 7−→ Jλ (λ ∈ Y ) is bijective.

Proof. It suffices to show that for each n, λ(n) is determined by Jλ. Now fix n
and set i = 2n− 1. Then

λ(n) = 0⇐⇒ en ∈ Hλ,i

⇐⇒ p1p2 · · · pi−1(en − 1) ∈ Jλ.

To see this, observe that if g ∈ Hλ,i then uλ,j(g − 1) = 0 for all j ≥ i and
p1p2 · · · pi−1uj = 0 for all j < i; while if g ∈ G r Hλ,i then uλ,ig 6= uλ,i so
uλ,i.p1p2 · · · pi−1(g − 1) 6= 0 since p1p2 · · · pi−1 is invertible in Fpi . �

Now given α ∈ Y , the set of β ∈ Y such that ZG/Jβ ∼= ZG/Jα is countable,
since for each such β there exists an epimorphism from ZG onto the countable
module ZG/Jα with kernel Jβ . As |Y | = 2ℵ0 , Lemma 5 ensures that the modules
Mα
∼= ZG/Jα lie in 2ℵ0 isomorphism classes, and Proposition 1 follows.

2. Branch Groups

For details of the following construction, see [S], §2 or [LS], §13.4. We start with
a rooted tree T , in which each vertex of level n ≥ 1 has valency 1 + ln (and the
root has valency l0). For each n we take a permutation group Tn of degree ln, set
W0 = T0, and for n ≥ 0 let Wn+1 = Tn oWn−1 be the permutational wreath product.
This acts in a natural way on the finite tree T [n+ 1] obtained by truncating T at
level n+ 1. Hence the inverse limit
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W = lim
←
Wn

sits naturally as a subgroup of Aut(T ).
Now W is a profinite group, a base for the neighbourhoods of the identity being

the set of level stabilizers

StW (n) = ker (W → Aut(T [n])) .

A subgroup Γ of W is said to have the congruence subgroup property if the natural
topology of W induces the profinite topology on Γ, that is, if every subgroup of
finite index in Γ contains StΓ(n) = Γ ∩ StW (n) for some n. If this holds, then the

natural homomorphism Γ̂→W is injective; if in addition Γ is dense in W, it follows

that Γ̂ ∼= W .
On pages 262-263 of [LS] we define four elements ξ, η, a and b of W, set Γ =

〈ξ, η, a, b〉, and prove that under certain conditions, Γ is both dense and satisfies
the congruence subgroup property.

The conditions are as follows:
(i) Tn is a doubly transitive subgroup of Sym(ln) (this condition can be consid-

erably weakened: slightly tweaking the definitions below, it suffices to asume that
Tn is transitive but not regular);

(ii) there exist a two-generator perfect group P = 〈x, y〉 and for each n an
epimorphism φn : P → Tn;

(iii) the automorphisms ξ, η, a and b are built in a particular way out of the

αn = xφn, βn = yφn ∈ Tn ≤ Sym(ln).

Specifically, ξ and η are ‘rooted automorphisms’, permuting bodily the l0 subtrees
attached to the root of T as α0, β0 respectively; a and b are so-called ‘directed’
(or ‘spinal’) automorphisms corresponding to the sequences (αn), (βn) – these act
as rooted automorphisms on subtrees of T rooted at vertices one step away from a
fixed infinite path (pictured on page 262 of [LS]).

In principle we could choose any sequence of finite simple groups; for simplicity
let us assume that ln = 5 and Tn = Alt(5) for all n. Put

α = (123), β = (12345).

Let λ ∈ {0, 1}N0 and set

αn = α, βn = β if λn = 0

αn = β, βn = α if λn = 1.

Let P = Alt(5) × Alt(5), x = (α, β), y = (β, α) ∈ P . Then P = 〈x, y〉 , and we
define φn : P → Tn by

xφn = α1−λn · βλn

yφn = αλn · β1−λn ,

thus φn is simply the projection of P = Alt(5)×Alt(5) onto either the first or the
second direct factor.

Let Γ(λ) = 〈ξ(λ), η(λ), a(λ), b(λ)〉 denote the group Γ constructed as above using
the sequence λ. There are 2ℵ0 such sequences, so we have constructed 2ℵ0 4-
generator subgroups of Aut(T ) with profinite completion W . (These groups are of
course residually finite since Aut(T ) is.)
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Claim: For each sequence λ, the set S(λ) := {µ | Γ(λ) ∼= Γ (µ)} is countable.

The claim implies that the number of isomorphism classes among the groups
Γ(λ) is still 2ℵ0 , and yields

Theorem 6. There are continuously many pairwise non-isomorphic 4-generator
residually finite groups all having the iterated wreath product W as their profinite
completion.

To establish the claim, we suppose that S(λ) is uncountable, and aim to derive
a contradiction.

For µ ∈ S(λ) let θµ : Γ(µ) → Γ (λ) be an isomorphism. Then θµ extends to a
continuous automorphism σµ of W (universal property of profinite completions).

Now the set

{a(µ)σ | µ ∈ S(λ), σ ∈ Aut(W )} ⊆ Γ (λ)

is countable because Γ (λ) is a finitely generated group. Hence there exists c ∈ Γ (λ)
such that the set

X := {µ ∈ S(λ) | a(µ)σµ = c}

is uncountable (all we need is: of cardinality at least 2).
One verifies easily that for each n,

StW (n) = W en

where e = 30 is the exponent of Alt(5); thus StW (n) is a topologically characteristic
subgroup of W .

Let µ 6= ν ∈ X. Then

a(µ)σµσ
−1
ν = a(ν).

Now for some n we have µn 6= νn. Say a(µ)n = α and a(ν)n = β. The continuous
automorphism σµσ

−1
ν of W fixes both StW (n) and StW (n−1), and therefore induces

an automorphism τ on the quotient

Wn = Alt(5)(5n) oWn−1

sending the coset of a(µ) to that of a(ν) :

(1, . . . , 1, α, 1, 1, 1, 1) · u τ7−→ (1, . . . , 1, β, 1, 1, 1, 1) · v

in an obvious notation (here, u and v lie in the stabilizer of the point 5n− 4). This
now implies that

(1, . . . , 1, β, 1, 1, 1, 1) = (∗, . . . , ∗, αz, ∗, . . . , ∗)

for some automorphism z of Alt(5). This is impossible since α and β have coprime
orders.

The Claim could also be quickly deduced, by a similar argument, from [LN],
Prop. 8.1. Thanks to the referee for this observation.
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