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Abstract. Two constructions are described: one gives soluble groups of derived
length 4, the other uses groups acting on a rooted tree.

To what extent is a finitely generated residually finite (f.g.r.f.) group determined
by its finite quotients? This question can be formulated in various ways, see for
example [GZ]. The family of all finite quotients of a group G is determined by its
inverse limit, the profinite completion é; following [GZ] let us define the genus of
an f.g.r.f. group G to be the set of isomorphism classes of f.g.r.f. groups H such
that H > G. If G is abelian, the genus is a singleton; if G is nilpotent, the genus
is finite, a deep result of P. F. Pickel [P1]; if G is metabelian the genus can be
countably infinite [P2].

Uncountable genera (in fact uncountably many such) were first constructed by
Pyber [P]: in that case the finite quotients are products of distinct alternating
groups. The only other examples (to our knowledge) are due to Nekrashevych [IN]:
here the finite quotients are 2-groups. (Added in proof: since the first version of this
paper was submitted, a construction similar to ours in §2 has been cleverly used by
Kionke and Schesler [KS] to provide examples of both amenable and non-amenable
groups having the same profinite completion.)

It struck us that the constructions introduced in [KKN] and in [S] could be
adapted to yield uncountable genera.

Those of the first kind are soluble: indeed this is the first example of an un-
countable genus of f.g. soluble groups. Our groups have derived length four. They
couldn’t be metabelian, like Pickel’s groups, because there are only countably many
f.g. metabelian groups; in fact our proof is more elementary than Pickel’s approach,
which depends on the theory of Picard groups. Whether a genus of f.g. soluble
groups of derived length 3 could be uncountable seems an interesting question.

Those of the second kind, like Nekrashevych’s groups, are branch groups. The
method is easier than his, however: using perfect groups in place of 2-groups gives
one cheap access to the relevant ‘congruence subgroup property’ (explained below).

Both constructions actually yield uncountably many distinct uncountable genera;
we shall not spell this out but it is implicit in the proofs.

1. Soluble Groups

Let G be the permutational wreath product C2:C5C, a three-generator soluble
group of derived length 3. We shall use the (easy) fact that G is residually finite.
The key result is
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Proposition 1. There is a family of 28° pairwise non-isomorphic, residually finite
cyclic ZG-modules all having the same finite images.

If these modules are M, a € X, the corresponding split extensions I', = M, xG
all have isomorphic profinite completions. They are all quotients of

T =72G %G =71G;

if M, = 72G/J, then T, 2 T*/K, where K, = J,.1 < ZG x G. For each o € X
the set of 5 € X such that I'3 = I',, is countable, since there are only countably
many epimorphisms from the 4-generator group I'* to the countable group I'y. It
follows that the groups Iy, a € X lie in 2%° isomorphism classes. Thus we may
infer

Theorem 2. There are 28° pairwise non-isomorphic 4-generator residually finite
soluble groups of derived length 4 with the same finite images. They are all quotients
of Z2 (C21C21 Coy).

Let us set up some notation. Let V be a vector space over Fo with basis
{ei,fi | i € Z}. Let a € GL(V) be the automorphism which swaps eg with fy
and fixes the other basis vectors. Let ¢ € GL(V) be the automorphism such that
eit = e;y1 and fit = fiyq1 for each i € Z. Then (a,t) generate a copy of Co ! Cw
in GL(V') and we identify G with V' x (a,t) <V x GL(V). Note that G contains
the elementary abelian subgroup (a; | i € Z) where a; = a¥' € GL(V) is the
automorphism of order 2 which swaps e; with f; and fixes the other basis vectors.

For A € Y := {0,1}" we define the sequence c) = (c;)ien by

Con—1 = €n, Con = fp if /\(n) =0
Coan—1 = fn, Con = ey if /\(n) =1,
and an ascending chain of subgroups of V' by

Hy; = (eo, fose—1, f-1,. .. e—i, [oisca, . ci).
The following is then clear:
Lemma 3. (i) V =2, Hx;.

(ii) For each a, f € Y and each n € N there is an element g = g(a,B,n) €
(a1,...,an) < G such that H}, ; = Hp; fori=1,2,...,n.

Fix an infinite sequence of distinct primes (p;);en. We now define a ZG-module
M, for each A\ € Y. For clarity, the subscript A will sometimes be suppressed. Let

U)\,i = Ui = IFPLC:/(I’IZ — 1>FPLG =~ ]Fpi ®]FpiH'i FPLG7

this is the right permutation F,, G module on the right cosets {H,;g | g € G} of H;
in GG, and we fix the module generator
Now M) is defined to be the cyclic ZG-submodule of [];2; U; generated by uy =
(u1,us,...). Thus

My 2 ZG/Jy
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where

Jy = anngzg(uy)
= () (Hx; — VZG + piZG) .
i=1

Since each H; is finite and G is residually finite, H; is closed in the profinite
topology of G. Thus the annihilator in Fp,,G of u;, namely (H; — 1)F,, G, is the
intersection of finite-codimension right ideals of the form (L—1)F,, G (here L ranges
over the subgroups of finite index in G that contain H;); hence each U; is residually
finite as a G-module. It follows that []:, U; is also a residually finite G-module,
and then so is its submodule M.

Lemma 4. Letvy, B €Y andlet N=N¢ <V. IfNH,,= NHg,; for alli then
the G-modules M., /M, (N — 1) and Mg/Mg(N — 1) are isomorphic.

Proof. It will suffice to prove the (stronger) statement
Jy+ (N —-1)ZG = Jg + (N — 1)ZG. (1)

Let z € N. Then for some k£ we have x € H,; and x € Hg; for all ¢ > k. Then
Uy,i(z —1) =0 and ug;(z — 1) = 0 for every ¢ > k. It follows that for A =+, 8,

wm-10=Y" ue-1)e@ U -1 <[
=1

Thus Jx + (N — 1)ZG maps uy into @, Ux;(N — 1) = D, say.
Let I, denote the annihilator in ZG of uy modulo D. Suppose z € I\. Then
UpNz = (u)\,isi)i

with each s; € (N — 1)ZG, and s; = 0 for all j > m, say. By the preceding
paragraph, there exists £ such that uy ;s; = 0 for each j < m and all i > k. Now
we choose integers ¢; such that ¢; = d;; (modp;) for ¢,j = 1,..., k. Taking r =
Zle g;s; we have
Ui =un ;8 if 1 <k (2)
ur;r =01if i > k. (3)
Thus uyz =uyrso z € Jy +r C Jy + (N — 1)ZG.
It follows that Iy = Jy + (N — 1)ZG. Thus it remains to show that I, = Ig.
Now let » € I,. Then (2) and (3) hold (with v for A), for some k and some
(3) is equivalent to
re (Hy; —1)ZG + p;,ZG Vi > k.
This implies
re )V =1ZG + pZG) = (V - 1)ZG
i>k
which in turn implies that for some k; we have

re (Hﬂ,l — I)ZG Vi > k. (4)
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In (2), we may enlarge k arbitrarily by setting s; = 0 for finitely many values of
i > k; so we may assume that k > k. Now (2) is equivalent to
r € (Hy; —1)ZG + (N — 1)ZG + p;,ZG
= (NH,; —1)ZG + p,ZG
= (NHg; —1)ZG + p,ZG (i < k).
Together with (4), this shows that (2) and (3) hold with § for A, and so r € I5.
The result follows by symmetry. (I

Now fix @, f € Y. For any A € Y, every finite G-module image of M) is an image
of My/Mx(N — 1) for some subgroup N = N of finite index in V. There exists
k such that H, ;N = Hg;N =V for all i > k, and there exists g = g(a, 8,k) € G
such that HY ; = Hg; for 1 <i < k. We can specify v € Y so that i, ; = HJ ; for
all ¢. Then H, ;N = Hg ;N for all ¢, and Lemma 4 gives

M, ~ Mg
M,(N-1) Ms(N-1)°

On the other hand,
7G 7G 7G
M, =22 = ~
YT, g, Ja
It follows that M,/My(N —1) =2 Mg/Mg(N — 1). We infer that M, and Mg
have the same finite images as G-modules.

Lemma 5. The map A — Jx (A € Y) is bijective.

Proof. It suffices to show that for each n, A(n) is determined by Jy. Now fix n
and set ¢ = 2n — 1. Then

An)=0<=e, € Hy;
< pip2 - pi-1(en — 1) € Jy.
To see this, observe that if ¢ € Hy; then uy;(g —1) = 0 for all j > 4 and

pip2---pi—iu; = 0 for all j < 4; while if ¢ € G\ Hy; then uy;9 # ux; so
Ux;-P1D2 -+ Di—1(g — 1) # 0 since p1ps - - - p;—1 is invertible in Fp,. O

Now given a € Y, the set of 8 € Y such that ZG/Js = ZG/J, is countable,
since for each such 3 there exists an epimorphism from ZG onto the countable
module ZG/J, with kernel Jz. As |Y| = 2% Lemma 5 ensures that the modules
M, 2 7ZG/J, lie in 2% jsomorphism classes, and Proposition 1 follows.

2. Branch Groups

For details of the following construction, see [S], §2 or [LS], §13.4. We start with
a rooted tree T, in which each vertex of level n > 1 has valency 1+ [,, (and the
root has valency ly). For each n we take a permutation group T, of degree l,,, set
Wy = Tp, and for n > 0 let Wy, 11 = T;,1W,,_1 be the permutational wreath product.
This acts in a natural way on the finite tree 7[n + 1] obtained by truncating 7 at
level n + 1. Hence the inverse limit
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W = limW,
+—

sits naturally as a subgroup of Aut(7).
Now W is a profinite group, a base for the neighbourhoods of the identity being
the set of level stabilizers

Stw (n) = ker (W — Aut(Tn])).

A subgroup IT" of W is said to have the congruence subgroup property if the natural
topology of W induces the profinite topology on I', that is, if every subgroup of
finite index in I" contains Str(n) = I' N Sty (n) for some n. If this holds, then the
natural homomorphism T — Wis injective; if in addition I is dense in W, it follows
that T' = W.

On pages 262-263 of [LS] we define four elements &, , a and b of W, set I' =
(&,m,a,b), and prove that under certain conditions, I' is both dense and satisfies
the congruence subgroup property.

The conditions are as follows:

(i) Ty, is a doubly transitive subgroup of Sym(l,,) (this condition can be consid-
erably weakened: slightly tweaking the definitions below, it suffices to asume that
T, is transitive but not regular);

(ii) there exist a two-generator perfect group P = (z,y) and for each n an
epimorphism ¢, : P — T};

(iii) the automorphisms &, 7, a and b are built in a particular way out of the

Op = TOn, Bn =Yon € Ty < Sym(ln)

Specifically, £ and n are ‘rooted automorphisms’, permuting bodily the [y subtrees
attached to the root of T as ag, By respectively; a and b are so-called ‘directed’
(or ‘spinal’) automorphisms corresponding to the sequences (), (8,) — these act
as rooted automorphisms on subtrees of 7 rooted at vertices one step away from a
fixed infinite path (pictured on page 262 of [LS]).

In principle we could choose any sequence of finite simple groups; for simplicity
let us assume that I, =5 and T,, = Alt(5) for all n. Put

a = (123), B = (12345).
Let A € {0,1}o and set
anp=a,B, =pif A\, =0
anp=p0,6p=aif A\, = 1.
Let P = Alt(5) x Alt(5), z = (o, 8), y = (B,) € P. Then P = (z,y), and we
define ¢,, : P — T,, by
2hy = . gAn
Yo =t - f1oAn

thus ¢,, is simply the projection of P = Alt(5) x Alt(5) onto either the first or the
second direct factor.

Let T'(A\) = (€(A),n(A), a(N), b(N\)) denote the group I constructed as above using
the sequence A. There are 2%° such sequences, so we have constructed 280 4-
generator subgroups of Aut(7) with profinite completion W. (These groups are of
course residually finite since Aut(7T) is.)
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Claim: For each sequence A, the set S(A) :={p | T(\) 2T (u)} is countable.

The claim implies that the number of isomorphism classes among the groups
['(\) is still 2% and yields

Theorem 6. There are continuously many pairwise non-isomorphic 4-generator
residually finite groups all having the iterated wreath product W as their profinite
completion.

To establish the claim, we suppose that S()A) is uncountable, and aim to derive
a contradiction.

For pn € S(A) let 6, : T'(u) — T'(X\) be an isomorphism. Then 6§, extends to a
continuous automorphism o,, of W (universal property of profinite completions).

Now the set

{a(w)? [ e S(A), o € Aut(W)} C T (X)

is countable because I' () is a finitely generated group. Hence there exists ¢ € T" ()
such that the set

X = {pe SO | alw) = ¢}

is uncountable (all we need is: of cardinality at least 2).
One verifies easily that for each n,

Sty (n) = We™

where e = 30 is the exponent of Alt(5); thus Sty (n) is a topologically characteristic
subgroup of W.
Let 4 # v € X. Then
a7 = a(v).
Now for some n we have p,, # v,. Say a(p), = o and a(v), = . The continuous
automorphism 0,0, ! of W fixes both Sty (n) and Sty (n—1), and therefore induces
an automorphism 7 on the quotient

W, = Alt(5)®") x W, _,
sending the coset of a(u) to that of a(v) :
(1,...,1,0,1,1,1,1) - u+— (1,...,1,8,1,1,1,1) - v

in an obvious notation (here, u and v lie in the stabilizer of the point 5™ —4). This
now implies that

(..., 1,8,1,1,1,1) = (%,..., %, 0% %, ... %)

for some automorphism z of Alt(5). This is impossible since & and 3 have coprime
orders.

The Claim could also be quickly deduced, by a similar argument, from [LN],
Prop. 8.1. Thanks to the referee for this observation.
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