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SMALE’S 17TH PROBLEM: ADVANCES AND OPEN

DIRECTIONS
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Dedicated to Vaughan Jones (1952-2020). In memoriam.

Abstract. We give an overview of Smale’s 17th problem describing the context
in which Smale proposed it, the ideas that led to its solution, and the extensions

and subsequent progress after this solution.
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1. Foreword

In June 1999 I received an invitation letter to give a short course on a summer
school. The letter was signed by Vaughan Jones, then the chairman of the NZMRI
(New Zealand Mathematical Research Institute). New Zealand being in the south,
the summer school was going to be in January. I immediately accepted. I had
never been in New Zealand, but I knew that it shared some similarities with my
home country (Uruguay). My stay at Kaikoura was delightful. The gentle beauty
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of the town, the vicinity of Marlborough’s vineyards, the whales in the neighboring
waters, the kindness of the local people in whose house I stayed, . . . And the school
was no less fascinating. Not only because of the interest of its students and the
quality of the short courses I took advantage to attend but also because of its
setting: lectures and lunches were held at the local Marae. More than twenty years
later I still look at it as a unique experience.

January 2000 was also the beginning of the 21st century. So, while we were
enjoying the school at Kaikoura, the presses of the American Mathematical Society
were at work to print a singular volume [4]. Commissioned by the International
Mathematical Union, and to celebrate the year 2000 as the Year of Mathematics,
the book acknowledges its inspiration on the list of problems proposed by Hilbert
in 1900 for the mathematicians of the 20th century. Thus, along with articles
describing the state of mathematics at the end of the century a few articles proposed,
in the spirit of Hilbert, lists of problems for the mathematicians of the 21st century.
Among the latter one was written by Vaughan [14]; it describes ten open problems
related to his research interests. Another was writen by Steve Smale [27]1. Similar
in character to Vaughan’s it describes eighteen problems related to Smale’s research
interests2. The nature of the 17th had a large overlap with the subject of my course
at Kaikoura. Our aim in this article is to describe —with a focus on ideas rather
than on technical details— what this problem is, what the work of Smale leading to
it was, how it was solved a few years ago, and what are the questions left open after
this solution. It is a fitting update to the course I gave at Vaughan’s invitation.

2. Smale 17th Problem

2.1. The background. Work on the solution of polynomial equations may be
traced back to the Babylonians, 4000 years ago, who solved some quadratic equa-
tions arising from problems relating areas and sides of rectangles [13]. The general
solution to cubic and quartic equations is generally attributed to Ferrari and Car-
dano in the 16th century. Solutions could be written in terms of square and cubic
roots and involved complex numbers. It took almost three centuries to prove that
a similar result cannot be achieved for the general quintic equation [1].

Nonetheless, the solutions exist. The Fundamental Theorem of Algebra states
that a polynomial equation of degree d has exactly d zeros in C when counted with
their multiplicity. An equally fundamental result in algebraic geometry, known
as the Bézout Theorem, extends the FTA to (square) systems of polynomials. It
needs a caveat though. The system {X1 +X2 = 0, X1 +X2 = 1} has, obviously, no
zeros: the two lines are parallel. But if one “adds points at infinity” to the complex
plane C2 these two lines do meet at one such point. Recall, the complex projective
space Pn is the quotient Cn+1/ ∼ where x ∼ y if x = λy for some λ ∈ C, λ 6= 0.
Also, a polynomial f ∈ C[X0, X1, . . . , Xn] is homogeneous of degree d when all its
monomials have degree d. In this case, if x ∈ Cn+1 is such that f(x) = 0 then,
for all λ ∈ C, f(λx) = λdf(x) = 0. Hence we can talk about the zeros of f in Pn
and, by extension, to the zeros in Pn of a system F = (f1, . . . , fn) of homogeneous
polynomials (possibly of different degrees). Given a point (x0, . . . , xn) ∈ Cn+1 \{0}

1Smale’s paper had actually been first published in the Mathematical Intelligencer [29].
2Of the eighteen, three (The Riemann Hypothesis, the Poincaré Conjecture and the question “Is

P = NP?”) were well-known at the time; the other fifteen were new.
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we denote by [x0 : · · · : xn] its class in Pn. In all what follows we will choose
representatives (x0, . . . , xn) of a point [x] ∈ Pn satisfying that ‖x‖ = 1. This has
no loss of generality and simplifies a number of expressions.

Now let d := (d1, . . . , dn) ∈ Nn and Hd be the linear space of the systems
F = (f1, . . . , fn) with fi ∈ C[X0, . . . , Xn] homogeneous of degree di. Generically
(and by this we mean outside a subset of smaller dimension in Hd) the system
F has a finite number of zeros in Pn. Bézout Theorem states that in this case,
and when counted with multiplicity, this number is D := d1d2 · · · dn. The question
underlying Smale’s 17th problem is the following:

Can one efficiently compute (any) one zero of a given F ∈ Hd? (S17)

2.2. The Bézout series. During the early 1990s, in a series of papers known
as “the Bézout series” [22, 23, 24, 26, 25], Mike Shub and Steve Smale laid
down the foundations of an approach to answer this question. We won’t attempt to
summarize these papers but limit ourselves to describe some of the main ingredients
in this approach.

2.2.1. Approximate zeros. We already mentioned that the solutions of a general
quintic equation (in one variable) cannot be expressed by radicals. Obviously,
neither can the zeros of a system F ∈ Hd. The most common way out of this
obstacle is to compute a (sufficiently good) approximation of such a zero. Arguably
the most common definition of approximation is through a bound on the distance
to a true zero. If dP denotes the Riemannian distance in Pn (i.e., the angle), we say
that z ∈ Pn is an ε-approximate zero of F when there is a zero ζ ∈ Pn of F such
that dP(z, ζ) ≤ ε. A shortcoming of this notion is the dependence on ε: being an
approximate zero in this sense is not an absolute notion. The definition adopted
in the Bézout series, which goes back to [28], is different and relies on Newton’s
method. The latter can be extended to the projective space. Given z ∈ Pn and
F ∈ Hd, the Newton iterate of F at z is

NF (z) := z −DzF |−1
Tz
F (z). (1)

Here Tz is the tangent space to Pn at z (i.e., the orthogonal complement z⊥ to z
in Cn+1) and DzF |Tz is the restriction to this space of the derivative of F at z.
A remarkable feature of Newton’s method is its quadratic convergence. Let ζ be a
non-singular (i.e., not multiple) zero of F and z be a point sufficiently close to ζ.
Then,

dP(Nk
F (z), ζ) ≤ dP(NF (z), ζ) 21−2k (2)

where Nk
F is the kth iterate of (1). Shub and Smale call a point z satisfying (2)

an approximate zero of F and the point ζ its associated zero. Note, this is a
qualitative notion; there is no dependence on a parameter measuring how well the
point approximates the zero. It is also a strong property. Once a point ζ is an
approximate zero of F , inequality (2) allows one to get an ε-approximation with
log2(1 + log2 ε) Newton steps.

Two questions are naturally posed. Firstly, what does ‘sufficiently close’ mean?
Can one provide estimates for this notion? The answer goes back (again) to [28].
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For a point ζ ∈ Pn define

γ(F, ζ) := sup
k≥2

∥∥∥∥∥DζF |−1
Tζ

Dk
ζF

k!

∥∥∥∥∥
1
k−1

(3)

where Dk
ζF is the kth derivative of F at ζ and the norm is the operator norm. The

γ-Theorem of Smale states that if F (ζ) = 0 and dP(z, ζ)γ(F, ζ) ≤ 1
6 then z is an

approximate zero of F with associated zero ζ (see, e.g., [17, Thm. 12]).
Secondly, in the absence of a true zero ζ at hand, can one certify that a point z

is an approximate zero of F? To answer this question let

β(F, z) :=
∥∥DzF |−1

Tz
F (z)

∥∥
be the length of the Newton step in (1) and

α(F, z) := β(F, z)γ(F, z).

Smale’s α-Theorem states that there exists a constant α0 such that if α(F, z) ≤ α0

then z is an approximate zero of F . A proof with α0 = 0.02 is in [10, Thm. 19.9].
The goal in (S17) is therefore not to compute a true zero but an approximate

zero as above.

2.2.2. Linear homotopies. The algorithmic scheme considered in the Bézout series
was a linear homotopy. Its general idea (which goes back at least to Lahaye [15])
can be simply described. Assume you want to compute the zeros of the polynomial
F = X3−X2− 5X + 4 and further assume that you aren’t aware of the formula to
do so. You may try to use the fact that you certainly know the zeros of G = X3−X.
To do so, consider the segment (in the space of polynomials of degree at most 3)

Qt := (1− t)G+ tF, with t ∈ [0, 1]. (4)

We observe that its extremities are Q0 = G and Q1 = F . Hence, when t varies from
0 to 1, we may expect the zeros of Qt to vary from the zeros of G (1, 0 and −1) to
those of F . Starting with one such zero ζ0 of G (say ζ0 = 1) this will induce a curve
C = (Qt, ζt)t∈[0,1] with Qt(ζt) = 0 for all t ∈ [0, 1] and if we can “follow” this curve
via a finite sequence {Qti , zi}i=0,...,k such that 0 = t0 < t1 < · · · < tk = 1 and zi is
a good approximation of ζti then we will end up with zk, a good approximation to
the zero ζ1 of Q1 = F . Figure 1 attempts to convey this idea.

A few comments are in order. The first is that the same idea applies for systems
in Hd; we now have n homogeneous polynomials in n + 1 variables and D zeros
in Pn instead of 3 in C but the basic idea is the same. The second is that the
“lifting” of the segment [Q0, Q1] to the curve C ⊂ Hd×Pn is well-defined provided
DζtQt|Tζt is invertible for all t ∈ [0, 1]. Recall that the discriminant variety in Hd

is the set

Σ := {F ∈ Hd | ∃ζ ∈ Pn s.t. F (ζ) = 0 and rank(DζF |Tζ ) < n}. (5)

Systems outside Σ are those having D different smooth zeros. Then, as long as the
segment [Q0, Q1] does not intersect Σ, the D zeros of G induce D curves in Hd×Pn
which do not intersect one another. Furthermore, it is known that Σ is a complex
hypersurface in Hd. Hence, it has real codimension 2 in Hd. This implies that,
generically, the segment [Q0, Q1] does not intersect Σ.
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Pn

Hd

ζ0
ζ1

G = Q0 F = Q1

C

Figure 1. The curve C , the initial pair (G, ζ0), the target pair (F, ζ1) and the
points (Qti , zi) that “follow” C .

The bottomline is, linear homotopy, in general, works. But for some unlucky
choices of F and G it may go awfully wrong. Consequently, to give a formal
meaning to the notion of “efficiently compute” we need a framework other than the
worst-case scenario.

2.3. Probabilities and complexity. To talk about computational efficiency sup-
poses a cost measure at hand. As we are considering numerical algorithms, that
is, algorithms whose basic operations are arithmetic operations and comparisons
between (idealized) real numbers the simplest, and most natural, cost measure for
a computation with input F is the number cost(F ) of such operations performed
along the computation. The complexity of an algorithm is a function relating the
cost of the algorithm’s computations to the size of the input data.

In our case, the size N of a system F ∈ Hd is the number of complex numbers we
need to describe the system. That is, the number of coefficients in its polynomials.
This gives us

N =

n∑
i=1

Ni where Ni =

(
n+ di
n

)
. (6)

We have mentioned that we need a framework for complexity other than the worst-
case scenario. The one proposed by Smale, which is widely used, is that of average
complexity. To describe it we need some structure on Hd.

We have mentioned that Hd is a linear space. We can turn it into an inner
product space by endowing it with the Weyl inner product. This is a dot product
in a scaled monomial basis which has the property of being unitarily invariant.
That is, for all F,G ∈ Hd and all unitary transformation u ∈ U(n + 1), we have
〈F ◦ u,G ◦ u〉 = 〈F,G〉. See [10, §16.1] for details. In all what follows, for a system
F ∈ Hd, ‖F‖ will denote its Weyl norm 〈F, F 〉1/2.

The Weyl norm induces a unit sphere in Hd, in what follows denoted by S(Hd),
which we can endow with the uniform distribution. The latter, in turn, allows one
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to define the average cost of an algorithm (taking inputs in S(Hd)) to be

E
F∼S(Hd)

cost(F ). (7)

2.4. The problem’s statement. We can now formally state Smale’s 17th prob-
lem. This statement relies on the usual understanding of “efficient” as solvable with
polynomially bounded average cost. The question in (S17) thus becomes

Is there an algorithm that, given an F ∈ S(Hd) randomly drawn from the
uniform distribution, halts with probability one returning an approximate
zero of F , and whose average cost is bounded by a polynomial in N?

3. The Solution

To turn the linear homotopy scheme into a bona fide algorithm we need to specify
how do we choose the initial pair (G, ζ0) and how do we compute the sequences
t0, t1, . . . , tk and z0, . . . , zk. Let us start with the latter. Before doing so, however,
we observe that it makes sense to work with the angle dS(Q,H) between systems
Q,H ∈ Hd instead of the distance ‖Q − H‖. This is so because there are no
changes in the zeros of a system when the system is multiplied by a constant.
Consequently, we will consider the segment [G,F ] parameterized by a fraction τ of
the angle dS(G,F ) instead of a fraction t of the distance ‖F −G‖ as in (4). That
is, we will consider {Qτ}τ∈[0,1] where Qτ is the only system in [G,F ] satisfying
dS(G,Qτ ) = τ dS(G,F ).

3.1. Condition numbers. Assume, for the time being, that we are given F,G
and ζ0 with G(ζ0) = 0. A first remark is that we won’t attempt to find a universal
partition of [0, 1] that we can use for all triples (F,G, ζ0) but rather that we will
proceed dynamically: at the ith step, we have computed a pair (Qi, zi) for which
we know that zi is an approximate zero of Qi with associated zero ζi (we should
write Qτi and ζτi but we simplify the notation for ease of reading). Next assume
that

dP(zi, ζi) ≤
1

12γ(Qi, ζi)
. (8)

Note that this is stronger, by a factor of 2, than the condition required in Smale’s

γ-Theorem (cf. §2.2.1). Given a ∆τ ≤ dS(Qi,F )
dS(G,F ) we let Qi+1 be the only system in

[Qi, F ] satisfying dS(Qi, Qi+1) = ∆τ dS(G,F ).

G

F

Qi

Qi+1
dS(G,F )

τidS(G,F )

∆τdS(G,F )

Figure 2. The system Qi+1 given by Qi and the step-length ∆τ .
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The goal is to compute a bound B(Qi, zi) such that

∆τ ≤ B(Qi, zi) =⇒ dP(zi, ζi+1) ≤ 1

6γ(Qi+1, ζi+1)
. (9)

If we manage to find B such that (9) holds, then zi is an approximate zero of
Qi+1 with associated zero ζi+1 (by Smale’s γ-Theorem) and then, taking

zi+1 := NQi+1(zi)

we have (by (2))

dP(zi+1, ζi+1) ≤ 1

2
dP(zi, ζi+1) ≤ 1

12γ(Qi+1, ζi+1)
,

i.e., that (8) holds, and we can iterate the process.
Note that inequality (8) is trivial for i = 0 as z0 = ζ0 and hence dS(z0, ζ0) = 0.

This allows us to begin the process. Figure 3 shows one step of the homotopy.

Pn

HdQi Qi+1

ζi

ζi+1

zi

zi+1

C

Figure 3. Computation of next pair (Qti+1,zi+1).

How do we obtain B satisfying (9)?
Recall, we want dP(zi, ζi+1) ≤ 1

6γ(Qi+1,ζi+1) . We begin by noting that

dP(zi, ζi+1) ≤ dP(zi, ζi) + dP(ζi, ζi+1). (10)

Inequality (8) already bounds the first term in the right-hand side. In addition,
Lipschitz bounds for γ−1 allow one to show, for Qi+1 sufficiently close to Qi and
ζi+1 sufficiently close to ζi, that

dP(zi, ζi) ≤
1

12γ(Qi, ζi)
≤ 1

c1γ(Qi+1, ζi+1)
for some c1 ∈ (6, 12). (11)

Let us assume for a while that this holds true and focus on the second term in the
right-hand side of (10). To bound this term define, for F ∈ Hd and z ∈ Pn, the
condition number of F at z to be

µnorm(F, z) := ‖F‖
∥∥∥DzF |−1

Tz
diag(

√
di)
∥∥∥ .
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This is a condition number in the classical sense: if F (ζ) = 0, then µnorm(F, ζ)
bounds the first-order variation of ζ in terms of the variation of F 3. Hence, we may
expect that

dP(ζi, ζi+1) ≤ (1 + c2)∆τµnorm(Qi, ζi) (12)

for some small constant c2. For a given c3, if we want the left-hand side above to
be at most 1

c3γ(Qi+1,ζi+1) we should impose

∆τ ≤ 1

c3(1 + c2)γ(Qi+1, ζi+1)µnorm(Qi, ζi)
. (13)

At this stage we use a fundamental result, known as the Higher Derivative Estimate,
which states that, for all F ∈ Hd and z ∈ Pn,

γ(F, z) ≤ 1

2
D3/2µnorm(F, z), (14)

where D := max{d1, . . . , dn}, to replace (13) by

∆τ ≤ 2

c3(1 + c2)D3/2µnorm(Qi+1, ζi+1)µnorm(Qi, ζi)
.

The use of Lipschitz bounds, now for µ−1
norm, allows one to obtain

max{µnorm(Qi+1, ζi+1), µnorm(Qi, ζi)} ≤ (1 + c4)µnorm(Qi, zi) (15)

for some small c4. We can conclude that taking

∆τ ≤ B(Qi, zi) :=
2

c3(1 + c2)(1 + c4)2D3/2µnorm(Qi, zi)2
(16)

we ensure that

dP(ζi, ζi+1) ≤ 1

c3γ(Qi+1, ζi+1)
. (17)

Finally, by chosing c3 := 6c1
c1−6 we obtain from (10), (11), and (17) that

dP(zi, ζi+1) ≤ 1

c1γ(Qi+1, ζi+1)
+

1

c3γ(Qi+1, ζi+1)
=

1

6γ(Qi+1, ζi+1)
.

This general argument comes from [21] where the value of the constants ci is not
worked out4. Detailed proofs are in [8, 9] and [10, §17.1]. In the latter it is shown
that one can actually chose them so that both (11) and (15) hold and that with
that choice (16) becomes

B(Qi, zi) :=
0.0085

dS(G,F )D3/2µnorm(Qi, zi)
(18)

This results in an easy-to-describe algorithm LinHom that takes as input a triple
(F,G, ζ0) with F,G ∈ Hd and G(ζ0) = 0.

3Actually, the true condition number would be µ(F, z) (see [10, Corollary 16.14]) which is defined
in the same manner but without the diagonal matrix diag(

√
di). The fact that µnorm is unitarily

invariant (whereas µ isn’t), however, make µnorm(F, z) more convenient to use.
4The author of [21] writes “In previous papers we have paid careful attention to the constants.

In this paper we are more cavalier.”
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Algorithm LinHom

input F,G ∈ Hd and ζ0 ∈ Pn such that G(ζ0) = 0

τ := 0, Q := G, z := ζ0

repeat

∆τ := 0.0085
dS(F,G)D3/2µ2

norm(Q,z)

τ := min{1, τ + ∆τ}
Q := Qτ

z := NQ(z)

until τ = 1

RETURN z

With some (but not much) additional work the arguments above show the fol-
lowing result (Proposition 17.3 in [10]).

Proposition 3.1. Suppose that [G,F ] does not intersect Σ. Then, the execution
of LinHom(F,G, ζ0) stops after at most K steps with

K = K(F,G, ζ0) ≤ 188D3/2dS(G,F )

∫ 1

0

µ2
norm(Qτ , ζτ )dτ.

The returned point z is an approximate zero of F . 2

3.2. A probabilistic solution. The first breakthrough towards a solution of
Smale’s 17th problem was produced by Carlos Beltrán and Luis Miguel Pardo [7].
It consisted of a randomized algorithm, in the sequel BP, to generate the initial
pair (G, ζ0). In the course of its execution (with input (n,d)) this algorithm draws
real numbers from the standard normal distribution and, because of this, its output
(G, ζ0) is random as well. If we define the solution variety to be

VS := {(G, ζ) ∈ S(Hd)× Pn | G(ζ) = 0} (19)

then the distribution ρstd induced on VS by the ouputs of BP can be easily described
as follows:

(i) draw G from the uniform distribution on S(Hd)

(ii) draw ζ from the (discrete) uniform distribution (20)

among the D zeros of G

A surprising feature of BP is that it constructs a polynomial system along with
one of its zeros without ever solving a (nonlinear) polynomial system. Roughly
speaking, it first draws the “linear part” of the system, then computes a zero of
this linear part, and finally adds a suitable complement of higher degree terms. For
a description of BP, its properties and its cost, see [8, 9] or [10, §17.6].

A zero-finding algorithm becomes clear, let’s call it LV (from Las Vegas, as ran-
domized algorithms as ours are called this way). On input F ∈ S(Hd), we first draw
a pair (G, ζ0) ∈ VS from ρstd via a call to BP. We then run the linear homotopy
on the triple (F,G, ζ0). This returns an approximate zero of F . To understand its
cost we next make two fundamental observations.
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Firstly, if F,G are independently drawn from S(Hd) and τ ∈ [0, 1] is fixed, then
the system Qτ ∈ [G,F ] given by

dS(G,Qτ ) = τdS(G,F )

is also uniformly distributed in S(Hd).
Secondly, let

µ2
avg(F ) :=

1

D
∑

ζ|F (ζ)=0

µ2
norm(F, ζ).

Then [8, Thm. 23],

E
Q∼S(Hd)

µ2
avg(Q) ≤ nN. (21)

These facts allow us to bound the average number of steps of LV. Indeed,

E
F∼S(Hd)

E
(G,ζ0)∼ρstd

K(F,G, ζ0)

≤
Prop. 3.1

188D3/2 E
F∼S(Hd)

E
(G,ζ0)∼ρstd

dS(G,F )

∫ 1

0

µ2
norm(Qτ , ζτ )dτ

= 188D3/2 E
F∼S(Hd)

E
G∼S(Hd)

dS(G,F )

∫ 1

0

1

D
∑

ζ|Qτ (ζ)=0

µ2
norm(Qτ , ζ)dτ

≤ 188πD3/2

∫ 1

0
E

F∼S(Hd)
E

G∼S(Hd)
µ2

avg(Qτ )dτ

= 188πD3/2

∫ 1

0
E

Q∼S(Hd)
µ2

avg(Q)dτ

≤
(21)

188πD3/2

∫ 1

0

nNdτ = 188πD3/2nN.

In addition to this, the cost of each step, which is dominated by the computation
of the Newton iteration, is O(N + n3), which is O(N) if we assume that di ≥ 2
for i = 1, . . . , d. This yields a total average cost of O(nD3/2N2) for LV (as the
cost for the execution of BP is dominated by that of the linear homotopy). This
O(nD3/2N2) average cost was independently obtained in [8] and [9].

A few last remarks are necessary. The average complexity bound above considers
two different sorts of average. On the one hand, the initial pair (G, ζ0) is produced
by a randomized algorithm and hence, the algorithm LV itself is randomized. On the
other hand, the input system F is considered random to derive average complexity
bounds.

Algorithm LV is of Las Vegas type: for a given input F ∈ S(Hd), if the algo-
rithm halts, it returns an approximate zero of F (and it halts with probability 1
for all F outside a set of measure zero). Yet, its running time (its cost) is a ran-
dom variable as it depends on (G, ζ0). The argument above does not provide a
bound for the randomized cost randcost(F ) of LV on input F , which is defined as

E(G,ζ0)∼ρstd K(F,G, ζ0). But it does so for the average of these randomized costs
over F ∈ S(Hd).

Because of the probabilistic nature of LV, the bound above was not a solution to
Smale’s 17th problem. The latter asked for a deterministic algorithm. More work
would be needed to reach this solution.
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3.3. A near solution and other advances. The arguments above, which follow
the exposition in [8], relie on (among other things) the fact that when F and G are
uniformly drawn from S(Hd), so is, for any τ ∈ [0, 1], the system Gτ . But as soon
as these distributions are not identical, technical difficulties may arise. This is at
the root of the different choice of setting taken in [9], where the same O(D3/2nN2)
bound for LV is proved as well. The setting here considers Gaussian distributions
on Hd.

The Weyl norm induces a standard Gaussian distribution N(0, I) on Hd via the
density

ρ(F ) :=
1

(2π)N
e−
‖F‖2

2

which in turn induces an average cost of an algorithm (taking inputs in Hd)

E
F∼N(0,I)

cost(F ). (22)

This quantity is not different to that in (7). Indeed, the standard Gaussian distri-
bution on R2N induces, via the bijection

R2N \ {0} → S(R2N )× (0,∞)

F 7→
(

F

‖F‖
, ‖F‖2

)
,

the uniform distribution on S(R2N ) and a χ2-distribution with 2N degrees of free-
dom on (0,∞). Moreover these two components are independent [10, Prop. 2.19].
Using the fact that the right-hand side in Proposition 3.1 is scale-invariant on F it
immediately follows that

E
F∼S(Hd)

cost(F ) = E
F∼N(0,I)

cost(F ).

The fact that it is scale-invariant on G allows one to use a version of BP that returns
a pair in

VH := {(G, ζ) ∈ Hd × Pn | G(ζ) = 0} (23)

instead of a pair in VS. Furthermore, if F and G are Gaussians, then so is

Qt = tF + (1− t)G
for every t ∈ [0, 1]. We cannot however directly use these facts in conjunction with
Proposition 3.1 because there τ parameterizes a fraction of the angle dS(G,F ) and
now t parameterizes a fraction of ‖F − G‖. But it is easy to go from one to the
other via the change of variables

t =
‖G‖

‖F‖ sinα cot(τα)− ‖F‖ cosα+ ‖G‖
where α = dS(G,F ). Then Proposition 3.1 takes the following form.

Corollary 3.2. Suppose that [G,F ] does not intersect Σ. Then the execution of
LinHom(F,G, ζ0) stops after at most K steps with

K = K(F,G, ζ0) ≤ 188D3/2‖F‖‖G‖
∫ 1

0

µ2
norm(Qt, ζt)

‖Qt‖2
dt.

The returned point z is an approximate zero of F . 2
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We won’t describe the derivation of the bound for

E
F∼N(0,I)

E
(G,ζ0)∼ρstd

K(F,G, ζ0).

Suffice it to mention that, although different in the details, it is similar to the one
described in §3.2 and it yields the same O(D3/2nN) bound.

One of the differences is the need to estimate EQ∼N(0,σ2I)
µ2
avg(Q)

‖Q‖2 instead of

EQ∼S(Hd) µ
2
avg(Q) (cf. (21)). It is here when one notes that if any of F or G is not

centered (i.e., have a mean different from 0), then Qt is still Gaussian (even though
not centered). In particular, this is true when either F or G are fixed. If F , for
instance, is fixed, then Qt is distributed as N(F, (1−t)2I). This fact was the trigger
to extend (21) not only to the Gaussian setting but also to the non-centered case.
The main technical result in [9] (see Theorem 3.6 there or [10, Thm. 18.4]) shows
that for all Q̄ ∈ Hd and σ > 0 we have

E
Q∼N(Q̄,σ2I)

µ2
avg(Q)

‖Q‖2
≤ e(n+ 1)

2σ2
. (24)

With this smoothed analysis at hand, and some additional work, two different com-
plexity results followed by fixing, respectively, F and (G, ζ0).

3.3.1. Instance complexity. Fixing F ∈ Hd and looking at the cost of LV with
input F lead us to the quantity randcost(F ). The first of the two results mentioned
above ([9, Thm. 3.7] or [10, Thm. 18.2]) shows that, for algorithm LV and F ∈ Hd,

randcost(F ) ≤ O(D3nN2µ2
max(F ))

where µmax(F ) = maxζ|F (ζ)=0 µnorm(F ). Reasonably enough, the randomized cost
for F depends on how well-conditioned the zeros of F are.

3.3.2. Deterministic algorithms. If we fix the initial pair (G, ζ0) instead, and we
take the average of the cost of the linear homotopy for an input F drawn from
N(0, I) we obtain our second result, namely

E
F∼N(0,I)

K(F,G, ζ0) = O(D3nNµ2
max(G))

which gives an average total cost of O(D3nN2µ2
max(G)). This bound deceptively

suggests that the solution to Smale’s 17th problem is near; it suffices to construct,
for a given pair (n,d), a system G ∈ Hd with µmax(G) = NO(1). We say ‘decep-
tively’ because this innocent-looking task proved to be remarkably difficult. A first
attempt to use this bound took as G the system given by

Gi :=
1√
2n

(Xdi
0 −X

di
i ), i = 1, . . . , n

and as ζ0 the point [(1, . . . , 1)]. One can show that µ2
max(G) ≤ 2(n + 1)D and,

together with a different algorithmic approach for high-degree systems (those with
D > n), the following result ([9, Thm. 3.9] or [10, Thm. 18.3]).

Theorem 3.3. There is a deterministic algorithm that on input F ∈ Hd computes
an approximate zero of F with average cost NO(log logN). Moreover, if we restrict
data to systems satisfying

D ≤ n
1

1+ε or D ≥ n1+ε
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for some fixed ε > 0, then the average time of the algorithm is polynomial in the
input size N . 2

The quest for a construction of a good initial pair (G, ζ0), raised already in the
Bézout series, would not be closed until very recently [6]. But by then Smale’s 17th
problem had already been solved.

3.4. The solution. The final solution of Smale’s 17th problem by Pierre Lairez [16]
relies on a beautifully ingenious idea. Beltrán and Pardo had avoided constructing
a pair (G, ζ0) that would work for all inputs F ∈ S(Hd) via a randomized construc-
tion: the pair (G, ζ0) depended on random reals drawn from a random number
generator. Lairez’s solution uses this construction with a twist: the random num-
bers are extracted from F itself.

To better understand this idea, let’s consider a situation simplified to the ex-
treme. Take a random number F ∈ [0, 1] from the uniform distribution (by glueing
the extremes of this interval we can look at it as the circle S1, a simplified version
of S(Hd)). Fix a number ` ∈ N. We can associate to F the numbers

F ◦ := 2−`b2`F c and R◦ := 2`(F − F ◦).

The first, the truncation of F , approximates F by taking the first ` bits of its
base-2 expansion. It satisfies F − F ◦ ≤ 2−`. The second, the fractional part of F ,
is uniformly distributed in [0, 1] and independent of F ◦. Lairez devised a similar
procedure now for systems F ∈ S(Hd) drawn from the uniform distribution. The
resulting systems F ◦ and R◦ are both in S(Hd) and satisfy that F ◦ approximates
F , and that R◦ is nearly uniform and nearly independent from F ◦.

The fractional part R◦ is then used as random source to produce a pair (G, ζ0) ∼
ρstd by a version of the BP algorithm which replaces the set R of numbers obtained
from a random number generator by the coefficients of R◦. Once this done, a
linear homotopy is performed with initial pair (G, ζ0) and target system F ◦. Had
we have started with F ∼ S(Hd) and the set R (the random numbers in the call
to BP) independent of F , the systems F and G would be uniform in S(Hd) and
independent, and the execution LinHom(F,G, ζ0) would end on an approximate zero
of F . As it happens, we are starting with F ◦ and R◦ nearly independent —but not
exactly so— and F ◦ close to F —but not exactly there—.

The fact we want to rely on is that the larger is ` the better are these approxi-
mations. And that we can quantify this dependence. Lairez used this fact to devise
a simple test that ensures that the curve C ◦ associated to the triple (F ◦, G, ζ0) is
close enough to the curve C associated to (F,G, ζ0), that the approximate zero of
F ◦ obtained by following C ◦ is also an approximate zero of F , and that the average
complexity analysis can still be carried on. It suffices to ensure that, at every step
of the linear homotopy,

D3/2µ2
norm(Qi, zi)% ≤

1

151
(25)

where % is an easy-to-compute quantity satisfying dS(F, F ◦) ≤ %. Hence, % (and
a fortiori dS(F, F ◦)) must be smaller than (151D3/2µ2

norm(Q, z))−1 all along (a
neighborhood of) C ◦. As we don’t know a priori a bound for the maximum of
these µ2

norms, the final algorithm starts with an initial value for `, computes the
associated F ◦ and R◦, computes (Q, ζ0) from R◦, and calls for LinHom(F ◦, G, ζ0).
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If condition (25) is satisfied at all steps, then the returned point in Pn is an approx-
imate zero of F . If at some step (25) is violated then the algorithm replaces ` by 2`
and starts again. The complexity analysis in [16] shows that the average total cost
of this deterministic procedure is O(nD3/2N2). This settles Smale’s 17th problem.

4. Subsequent Progress

The positive answer in Lairez’s paper did not bring to a stop the interest on
Smale’s 17th problem. On the contrary, a number of questions naturally arose.

4.1. Eigenpair computations. One such question dealt with applying the ideas
for the design and analysis of linear homotopies to specific systems of equations
which do not entirely fit the framework above. A clear example is the computation
of eigenpairs. Recall, an eigenpair of a matrix A ∈ Cn×n is a pair (λ, v) ∈ C×Pn−1

satisfying Av = λv. This equality amounts to the n equations

A1v = λv1

... (26)

Anv = λvn

where Aj denotes the jth row of A. These equations are linear in the variables
v1, . . . , vn and quadratic in the set of all the variables. There are n equations with
(generically) a finite number of of solutions in C × Pn−1 but, in glaring contrast
with the general framework, we expect system (26) to have only n solutions, not
2n. A tailor-made approach is necessary.

Algorithms computing eigenpairs have existed for long. But their analysis,
notwithstanding their practical performance, has been wanting. This moved James
Demmel [12, pg. 139] to write

So the problem of devising an algorithm [for the eigenvalue problem] that
is numerically stable and globally (and quickly!) convergent remains open.

An answer to this problem was given in [3], where the general lines in the previous
sections —devising an appropriate condition number and a step-length computation
in terms of it, analysing the number of steps of the linear homotopy as in Proposi-
tion 3.1, performing a smoothed analysis of the condition number as in (24), and
exhibiting a good initial triple (A0, λ0, v0) (which in this context turns out to be
easy!)— allowed one to show an O(n7) bound for the average cost of computing
eigenpairs. We note that this algorithm, even though its observed average complex-
ity in simulations is O(n3.66), is not efficient when compared with the eigensolvers
available in packages such as Matlab or Julia. But it answers Demmel’s question in
the sense that it was the first eigensolver for which correctness, numerical stability,
and a polynomially bounded average cost could be established.

4.2. Rigid homotopies. Probably the most obvious question raised by the solu-
tion to Smale’s 17th problem dealt with possible complexity improvements. Because
just reading the system F takes time N , a lower bound of Ω(N) is clear. The upper
bound for the average cost of LV is O(nD3/2N2). We observe that in this bound
the crucial parameter is N . To see why, think on the case n = D. In this case,
N ≥

(
n+D
n

)
=
(

2n
n

)
∼ 4n√

πn
. That is, N is exponentially larger than n (and D).

We therefore want to understand how small can we make the exponent of N . We
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already noted that the cost of each iteration of the homotopy is O(N). This cannot
be improved. The question then becomes, can one decrease the expected number
of iterations (without paying for it in the cost of each iteration)?

A first answer towards this goal was given in [2] where a more elaborated com-
putation of ∆τ , which draw from ideas in [3], allowed for a O(D3/2nN1/2) bound
for the expected number of iterations (and hence an O(D3/2nN3/2) bound for the
average total cost).

An optimal answer was provided by Lairez [17]. The involved ideas were new
and touched both the algorithm and its analysis.

Let us begin with the algorithmic ideas. The innovation here is to perform a
homotopy that keeps invariant the shape of the hypersurfaces f1 = 0, . . . , fn = 0
(hence the name rigid) continuously deforming only their position within Pn. To
describe how this is done, denote by U(n + 1) the group of unitary matrices of
dimension n + 1. This group has an obvious action on Pn; for any u ∈ U(n + 1)
and z ∈ Cn+1 \ {0} we define u([z]) := [u(z)]. It also acts on the space Hd of
homogeneous polynomials of degree d in X0, . . . , Xn. If f ∈ Hd and u ∈ U(n +
1) then uf := f ◦ u−1 is easily seen to be in Hd. Its zero set Z(uf) is just a
rotation of Z(f); indeed, Z(uf) = u(Z(f)). This action extends componentwise
to systems. Let U := U(n + 1)n. If F ∈ Hd and u = (u1, . . . , un) ∈ U then
uf := (u1f1, . . . , unfn) ∈ Hd.

Assume next that we are given a pair (v, ζ0) ∈ U×Pn such that Q0(ζ0) = 0 where
Q0 := vF . We can then start a homotopy with the pair (Q0, ζ0). The breakthrough
lies on the fact that the segment we will lift is not the segment [Q0, F ] ⊂ Hd but
the geodesic [v, I] ⊂ U . Here v = (v1, . . . , vn) and I = (I, . . . , I). This lifting lives
in the solution variety (compare with (19) and (23))

VU := {(u, ζ) ∈ U × Pn | (fi ◦ ui)(ζ) = 0, i = 1, . . . , n}.

In practice, we don’t need to use the geodesic [u, I]; we can use instead any path
{ut}t∈[0,T ] with endpoints v and I and satisfying a few conditions (Lairez imposes
being 1-Lipschitz and having length at most 4n). The corresponding systems in
the homotopy are then

Qt := utF = ((ut)1f1, . . . , (ut)nfn).

Figure 4 aims at depicting the process.

f1

f2

ζ0

ζt
ζ1

Figure 4. A rigid homotopy. Left. The given hypersurfaces. Second. The rotated
hypersurfaces with a common zero. Third. An intermediate stage in the
homotopy. Right. The final stage of the homotopy: the original
hypersurfaces with a common zero.
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The general arrangement in Lairez’s algorithm is otherwise the same as in LV.
We first generate the random pair (u0, ζ0) ∈ VU . To do so Lairez develops in this
context a version of the BP algorithm which draws O(n3) real numbers from the
standard Gaussian distribution and performs O(n4 + nD4) arithmetic operations.
The distribution ρU in VU induced by this version of BP is similar to ρstd; it just
replaces G ∈ S(Hd) by u ∈ U in (20(i)), and G by uF in (20(ii)).

After which, the homotopy proceeds as in the linear case, with steps now in the
path {ut}t∈[0,T ] ⊂ U instead of in the segment [G,F ].

The computation of the length of these steps is what brings us to the innovations
in the analysis of the homotopy. Lairez observed that in the derivation of B leading
to (18) two inequalities are coarse. Firstly, (12), which bounds the variation of the
zero ζ as a worst-case variation. Secondly, the Higher Derivative Estimate (14)
that replaces γ by µnorm. In both cases the use of µnorm(F, z) is computationally
practical but leads to coarse bounds. One would like to use measures serving the
same purposes, yielding finer bounds, and being also inexpensive to compute. To
achieve this, Lairez splits condition at a point into two components. Given F ∈ Hd

and z ∈ Pn, we let

Fz :=

(
f1

‖Dzf1‖
, . . . ,

fn
‖Dzfn‖

)
.

The incidence condition number of F at z is then given by

κ(F, z) :=
∥∥(DzFz)

†∥∥ .
Here † denotes Moore-Penrose inverse. When F (z) = 0 this quantity depends only
on the angles made by the tangent spaces at z of the n hypersurfaces Z(fi) := {z ∈
Pn | fi(z) = 0}. Moreover, κ(uF, z) satisfies a version of (12) w.r.t. variations of u
in U (see [17, Lem. 16]). That is, we have

dP(ζi, ζi+1) . ∆t κ(uiF, ζi). (27)

For the other ingredient, we define, for f ∈ Hd and z ∈ Pn,

γFrob(f, z) :=

{
supk≥2

(
1
k!‖Dzf‖−1‖Dk

zf‖Frob

) 1
k−1 if Dzf is nonzero

∞ otherwise

and we let

γ̄2
Frob(F, z) := γ2

Frob(f1, z) + · · ·+ γ2
Frob(fn, z).

In contrast with κ(F, z), γ̄Frob(F, z) does not depend on how the hypersurfaces
Z(fi) intersect at z but only on the geometry of each individual hypersurface at z.

The split Frobenius γ number

γ̂Frob(F, z) := κ(F, z) γ̄Frob(F, z) (28)

captures both aspects. Moreover, it bounds γ(F, z) as we have

γ(F, z) ≤ γ̂Frob(F, z) (29)

thus providing us with a replacement for (14) which, we will see, turns out to be
better for our purposes.

With (27) and (29) respectively replacing (12) and (14) we can reason as in §3.1
and use now Lipschitz bounds for κ and γFrob to derive an expression for the step
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length of the form

∆t =
c

κ(uiF, zi) γ̂Frob(uiF, zi)

for some constant c. This, in turn, leads to a bound for the number of steps in the
homotopy of the form (compare with Proposition 3.1)

K = KF (u, ζ0) ≤ C
∫ T

0

κ(utF, ζt) γ̂Frob(utF, ζt)dt (30)

for some constant C. Furthermore, Lairez [17, Prop. 17] shows that, for a given
F ∈ Hd with square-free components,

E
(u,ζ)∼ρU

κ2(uF, ζ) ≤ 6n2 (31)

and that [17, Lem 38], for a Gaussian f ∈ Hd,

E
f∼N(0,I)

E
ζ∼Z(f)

γ2
Frob(f, ζ) ≤ 1

4
d3(d+ n).

We can use this inequality to bound, for a Gaussian F ∈ Hd, the value of EF∼N(0,I) E(u,ζ)∼ρU γ̄
2
Frob(uF, ζ).

Indeed, if (u, ζ) ∈ VU is ρU -distributed then u1ζ, . . . , unζ are zeros of f1, . . . , fn, uni-
formly distributed in Z(f1), . . . , Z(fn), respectively, and independent [17, Thm. 8].
Also, if F is Gaussian, so are its components fi. It follows that

E
F∼N(0,I)

E
(u,ζ)∼ρU

γ̄2
Frob(uF, ζ) = E

(u,ζ)∼ρU

n∑
i=1

E
fi∼N(0,I)

γ2
Frob(uifi, ζ)

= E
(u,ζ)∼ρU

n∑
i=1

E
fi∼N(0,I)

γ2
Frob(fi, uiζ)

=

n∑
i=1

E
fi∼N(0,I)

E
ζi∼Z(fi)

γ2
Frob(fi, ζi)

≤ 1

4
nD3(D + n). (32)

At this stage, the reasoning continues as in §3.2. One firstly shows that when F
is Gaussian (or, equivalently, when F ∼ S(Hd)) and (u, ζ) ∼ ρU , the pair (ut, ζt)
in (30) is also ρU -distributed in VU . Hence

E
F∼N(0,I)

E
(u,ζ)∼ρU

K ≤ C E
F∼N(0,I)

∫ T

0
E

(ut,ζt)∼ρU
κ(utF, ζt) γ̂Frob(utF, ζt)dt

≤ 4Cn E
F∼N(0,I)

E
(u,ζ)∼ρU

κ(uF, ζ) γ̂Frob(uF, ζ)

=
(28)

4Cn E
F∼N(0,I)

E
(u,ζ)∼ρU

κ2(uF, ζ) γ̄Frob(uF, ζ)

= 4Cn E
F∼N(0,I)

E
(u,ζ)∼ρU

κ2(uF, ζ)

E
F∼N(0,I)

E
(u,ζ)∼ρU

γ̄Frob(uF, ζ)

≤
(31−32)

4Cn · 6n2 ·
√

1

4
nD3(D + n) (33)

= O(n4D2).



250 FELIPE CUCKER

For the second equality we used that κ and γ̄Frob are independent. For the last in-
equality we used that F has square-free components almost surely (along with (31))
and Jensen’s inequality (along with (32)).

This is the bound we wished for. It shows that the average number of steps in
the rigid homotopy is polynomial in n and D. It only remains to be seen that the
cost of each such step is still linear in N . Lairez [17, Cor. 34] shows that this is the
case: the cost of each step is O(n2D2N). It may be worth to describe, nonetheless,
how γFrob(fi, z) is computed for a given fi ∈ Hdi and a point z ∈ Cn+1 as this
computation is not straightforward.

The crucial observation is the following. Let g(X) ∈ Hdi be the shifted poly-
nomial fi(z + X). This is no longer a homogeneous polynomial. For k = 0, . . . , di
let g[k] denote the homogeneous component of degree k of g. Then Dk

zf = Dk
0g

and [17, Lem. 30] ∥∥∥∥ 1

k!
Dk
zf

∥∥∥∥
Frob

=

∥∥∥∥ 1

k!
Dk

0g

∥∥∥∥
Frob

=
∥∥g[k]

∥∥ (34)

where, we emphasize, the norm of the last term is the Weyl norm. This equality
provides a way to compute the left-hand side: compute g, then its component g[k],
and finally the Weyl norm of the latter. The cost of this preocedure is dominated by
the cost of the computation of g. Let Ni = dimCHdi =

(
n+di
n

)
. A naive approach

to compute g leads to an Ω(N2
i ) which is too large. But Lairez devised a procedure

to compute g whose cost is O(nd2
iNi) [17, Prop. 32]. Since the computation of

‖Dzfi‖−1 has cost O(Ni) it follows that we can compute γFrob(fi, z) with cost
O(nd2

iNi). Furthermore, if ui ∈ U(n+ 1) we have γFrob(uifi, z) = γFrob(fi, uiz) so
that we can compute γFrob(uifi, z) with the same cost. We conclude that, given
F ∈ Hd, u ∈ U , and z ∈ Cn+1, we can compute γ̄Frob(uF, z) with cost O(nD2N).

The other ingredients in the computation of the step-length being simpler, one
concludes the analysis with a total cost for this computation of O(n2D2N). In
conjunction with the bound for the average number of steps in (33), and the O(n4 +
nD4) cost of computing the initial pair, we end up with a O(n6D4N) for the average
total cost of computing one zero of F . The exponent 1 on N is optimal.

4.3. Structured systems. Consider the polynomial

a0X
3
0X

2
1X

3
2 + a1X

5
1X

3
2 + a2X

8
0 + a3X0X

2
1X

5
2 . (35)

We can describe it via the list

{(a0, (3, 2, 3)), (a1, (0, 5, 3)), (a2, (8, 0, 0)), (a3, (1, 2, 5))} (36)

which, even with the integers 3, 2, 3, . . . written in binary, is substantially shorter
than the list of all the

(
8+3

3

)
= 165 coefficients of a generic polynomial in H8 (in

X0, X1, X2). The list in (36) is a sparse encoding of the polynomial above; the list
of all coefficients (in some preestablished order) is known as dense encoding. It
is the one we have been considering in all the previous sections and has a size of
Θ(dimCHd). It is easy to see that the sparse encoding of a polynomial cannot be
much bigger than its dense encoding but can be way smaller. A price for this suc-
cinctness is fragility: a number of operations with polynomials destroy sparseness.
Think for instance in quotient and remainder applied to the polynomials Xn

0 −Xn
1

and X0 −X1. They are both sparse (in the sense of having only two monomials)
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but their quotient is Xn−1
0 +Xn−2

0 X1 + · · ·+Xn−1
1 which has n monomials. Only

writing this quotient has a high cost in the sparse size of the data, in contrast with
its cost as a function on the dense size, which is small.

Another way to describe a polynomial, which can be even more succint than
a sparse encoding, is as a straight-line program (SLP for short). The sequence of
operations (starting with the variables X0 and X1)

X0 +X1 → (X0 +X1)2 → (X0 +X1)4 → (X0 +X1)8 → (X0 +X1)16

...

→ (X0 +X1)2n =

2n∑
j=0

(
2n

j

)
X2n−j

0 Xj
1

performs n + 1 operations and ends up in a polynomial f of degree 2n for which
both the dense and sparse encodings have size Ω(2n). We can encode f via the
sequence of operations above and this encoding has size O(n). Not unexpectedly,
the catalog of operations which are expensive in terms of the SLP encoding is
bigger. The only operation that is clearly efficiently performed in terms of the
SLP size, besides arithmetic operations with polynomials, is evaluation: given an
SLP in n variables X1, . . . , Xn encoding a polynomial f and a point z ∈ Cn, the
computation of f(z) ∈ C takes time linear in the SLP size. A fundamental result of
Baur and Strassen [5] shows that we can compute all of f(z), ∂X1

f(z), . . . , ∂Xnf(z)
with essentially the same cost.

The question which is naturally posed is the following:

What is the cost of computing a zero (S17-Sparse)
of a system in terms of its sparse (or SLP) size?

Before attempting any answer to this question it is worth to look at it with more
detail. Consider the sparse size, to fix ideas. A first remark is that the set of
polynomials in Hd having some coefficient equal to 0 has measure zero in Hd.
Consequently, the average cost over Hd in terms of the sparse size of systems
in Hd will be the same as that in terms of its dense size. One may refine the
question above and consider only polynomials with a given monomial structure.
For instance, one of the polynomials may be imposed to have the form in (35). The
average (regarding this polynomial) would then be taken, not over the whole of H8,
but over the tuples (a0, a1, a2, a3) of coefficients, say from a Gaussian distribution
on C4. Other components of the input system F ∈ Hd may also have a (possibly
different) fixed monomial structure.

This determines a space of inputs which is a linear subspace L of Hd over which
a Gaussian measure is naturally defined (or a uniform measure on its associated
unit sphere). And suggests that an approach as described in Sections 2 and 3 could
be possible. Unfortunately though, such an approach is plagued with difficulties.

Firstly, one observes that it may happen that all systems in L are singular.
Indeed, this is the case, for instance, if a component of F has the form

a0X
3
0X

2
1X

3
2 + a1X

2
0X

3
1X

3
2 + a2X

8
0 + a3X

2
0X1X

5
2

= X2
0 (a0X0X

2
1X

3
2 + a1X

4
1X

2
2 + a2X

6
0 + a3X1X

5
2 )
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because all the zeros of F on the hypersurface {X0 = 0} are double. For systems
in such an L any linear homotopy will loop forever and the average complexity of
the algorithm will be infinity.

Secondly, L is not unitary invariant. In general, given F ∈ L and u ∈ U , we
don’t have uF ∈ L. This deprives us from a very powerful technical tool.

Nonetheless research in homotopy methods for sparse systems has been carried
out for decades. And even though there are no conclusive results, advances have
been made. The state of the art in this quest can be found in the papers [18, 19]
and in the references therein.

4.4. Low-complexity systems. The framework of rigid homotopies introduced
by Lairez naturally considers (possibly small) subsets of Hd. Indeed, for a given
input F ∈ Hd the space where the homotopy path leading to F lives in is not the
whole of Hd (as in Sections 2 and 3) but its subset UF := {uF | u ∈ U}. The initial
system G is not arbitrary in Hd but of the form vF for some arbitrary v ∈ U . In
addition, if L(F ) denotes the evluation complexity of F (that is, the length of the
shortest SLP computing F ) then L(uF ) ≤ L(F ) + (n+ 1)4. In particular, if F has
a low evaluation complexity then all systems utF in the homotopy path have low
evaluation complexity as well.

These considerations are the motivation behind [11], where the goal is to devise
an efficient rigid homotopy for low-complexity systems. On a first approach, a
system F ∈ Hd is fixed and random inputs are considered with the form uF where
u is drawn from the uniform distribution in U . This mimics the framework in §3.2
replacing random F,G ∈ S(Hd) by random u,v ∈ U .

At a first glance, it would seem that the algorithm in [17] can be applied without
modifications. Unfortunately, a careful look at the details shows that there is a
difficulty. For f ∈ Hd, the computation of γFrob(f, z) described at the end of §4.2
relies on computing Weyl norms ‖gk‖ for the homogeneous components gk of the
polynomial g := f(z + X). If f is given by a short SLP then g is given by an
equally short SLP. This is clear. Lemma 3.4 in [11] shows that we can actually
do more: for any w ∈ Cn+1 we can compute the values g0(w), . . . , gd(w) with cost
O(dL(f)+n+log d). So, the evaluation complexity of the gks is also small. We are
left with the problem of computing their Weyl norms (obviously, without expanding
the gks to obtain their coefficients; this would be too expensive). The way out lies
on (yet another) useful property of the Weyl norm, namely, that for g ∈ Hd,

‖g‖2 =

(
n+ d

d

)
E

w∼S(Cn+1)
|g(w)|2. (37)

This allows for a randomized algorithm to approximate ‖g‖: sample s points
w1, . . . , ws from S(Cn+1), compute the empirical average M := 1

s

∑
|g(wi)|2 and

return
√(

n+d
d

)
M . The cost of this algorithm is low (it relies on evaluating g)

but one pays for it both in terms of precision —we only obtain an approximation
of ‖g‖— and of certainty —we only have a probabilistic guarantee of correctness.
More precisely, the following is Theorem 3.3 in [11].

Theorem 4.1. There is a randomized algorithm which, given f ∈ C[X0, . . . , Xn]
as a black-box function, an upper bound d on its degree, a point z ∈ Cn+1, and
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some ε > 0, returns a number G ≥ 0 satisfying

γFrob(f, z) ≤ G ≤ 192n2dγFrob(f, z)

with probability at least 1− ε. The computation takes O
(
d log(dε )(L(f) +n+ log d)

)
operations. 2

The algorithms in §3.2, §3.3, and §4.2 are all of Las Vegas type. This means
that they are randomized algorithms (they draw random numbers during their
execution) whose output is guaranteed to be correct: only their running time is
random (for each input data). The algorithm in Theorem 4.1 is also a randomized
one but of Monte Carlo type. Its running time is deterministic but its output is
correct only with a given probability.

One can replace in the rigid homotopy the computation of γFrob(f, z) described at
the end of §4.2 by the randomized algorithm in Theorem 4.1. In doing so, however,
the rigid homotopy may be affected in two ways. If the γFrobs computed along the
homotopy are overestimated (the upper bound in Theorem 4.1 does not hold) then
the corresponding step-lengths are too short and the complexity bounds no longer
hold. If, instead, some γFrob is underestimated (the lower bound in Theorem 4.1
does not hold) then the correctness of the rigid continuation is compromised. The
algorithm devised in [11], called there BoostBlackBoxSolve, deals with both
problems. The next result (Theorem 1.1 in [11]) states its properties regarding
termination and correctness.

Theorem 4.2. Let F = (f1, . . . , fn) be a homogeneous polynomial system with
degrees at most D in n+ 1 variables having only regular zeros. On input F , given
as a black-box evaluation program, and ε > 0, Algorithm BoostBlackBoxSolve
terminates almost surely and computes a point z ∈ Pn, which is an approximate
zero of F with probability at least 1− ε. 2

Because of its reliance on the Monte-Carlo computation of the γFrobs, Algo-
rithm BoostBlackBoxSolve is itself of Monte Carlo type: the output is only
correct with given probability. Nonetheless, this probability is bounded below inde-
pendently of F . The algorithm succeeds with probability at least 1−ε for any input
F with regular zeros (of course, it may not terminate if this regularity hypothesis
is not satisfied as the homotopy path may lead to a singular zero).

We are next interested on the average cost of BoostBlackBoxSolve over
random data of the form uF for a fixed F and random u ∈ U . As F itself is fixed,
we should expect this cost to depend with the geometry of F . We can express this
dependence in terms of γFrob. We define, for f ∈ Hd,

Γ(f)2 := E
z∈Z(f)

γFrob(f, z)2

where the distribution on Z(f) ⊂ P(Cn+1) is the uniform, and, for F ∈ Hd,

Γ(F ) :=
(
Γ(f1)2 + · · ·+ Γ(fn)2

)1/2
.

This quantity is a measure of regularity (or conditioning) of the set of hypersurfaces
{Z(f1), . . . , Z(fn)}. If all these hypersurfaces have only algebraically regular points
then Γ(F ) <∞. But the converse is not true. A necessary and sufficient condition
for the finiteness of Γ(F ) is yet to be found.
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The complexity of BoostBlackBoxSolve, is bounded in the next result [11,
Thm. 1.2].

Theorem 4.3. Let F = (f1, . . . , fn) be a homogeneous polynomial system with
degrees at most D in n + 1 variables. Assume that, for all i ≤ n, fi is square-
free. Let u ∈ U be uniformly distributed. Then, on input uF , given as a black-box
evaluation program, and ε ∈ [0, 1

4 ], Algorithm BoostBlackBoxSolve terminates
after

(n,D)O(1) · L(F ) ·
(
Γ(F ) log Γ(F ) + log log ε−1

)
operations on average. “On average” refers to expectation over both the random
draws made by the algorithm and the random variable u, but F is fixed. 2

The hypothesis on F (the fact that all the Z(fi) are regular) implies that each
fi is square-free. Hence, by Theorem 4.2, ensures that the algorithm terminates
almost surely. It further implies that the quantity Γ(F ) is finite and, therefore, so
is the bound in Theorem 4.3. We note that this bound is polynomial in n and D,
linear in L(F ), almost linear in Γ(F ), and linear in log log ε−1. The latter means

that we can take ε = 2−2100

without afterthoughts as to the effect on the running’s
cost. For all practical purposes the algorithm behaves as one with certified outputs.

4.5. Algebraic branching programs. Theorem 4.3 can be extended to subsets
M ⊂ Hd other than UF (for a given F ∈ Hd). The crucial requirement on M is
that it is unitarily invariant in the following sense: M is endowed with a probability
distribution such that for all F ∈M and all u ∈ U , uF ∈M , and F and uF are
identically distributed. Trivially, the set UF is unitarily invariant.

Final average complexity bounds will now depend not on Γ(F ) for a particular
F but on the quantity Ef∈M Γ(F )2. The second main result in [11] estimates this
quantity for a family of well-known subsets M given by SLPs known as Algebraic
Branching Programs (ABP) introduced by Nissan [20].

To understand ABPs let us consider a simple example. Consider the matrices

A1 =

[
6X0 +X1 −3X0 + 2X1 5X0

4X0 − 3X1 2X0 + 7X1 6X0 − 5X1

]
and

A2 =

3X0 + 2X1 −X0 + 4X1

X0 −X1 2X0 − 5X1

2X0 −X1 −3X0 −X1


whose entries are linear forms in (X0, X1). We can take the product

A1 ·A2 =

[
25X2

0 + 15X0X1 −27X2
0 + 37X0X1 − 6X2

1

26X2
0 − 12X0X1 − 8X2

1 −18X2
0 + 32X0X1 − 42X2

1

]
as well as its trace

fA(X) = 7X2
0 + 47X0X1 − 42X2

1 .

The coefficients of this polynomial in H2 are simple functions of the entries in A1

and A2. In this example, the former is an element in C3 and the latter an element
in C24. Clearly, the map (A1, A2) 7→ fA is surjective. But this needs not to be so.

Let r = (r1, . . . , rd) ∈ Nd, r0 = rd, and Mr(n + 1) be the space of d-tuples of
matrices A = (A1(X), . . . , Ad(X)) where Aj(X) is a rj−1×rj matrix whose entries
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are linear forms on (X0, . . . , Xn). This is a complex linear space of dimension

(n+ 1)
∑d
j=1 rj−1rj .

For A ∈Mr(n+ 1) we consider the homogeneous polynomial of degree d

fA(X) := tr(A1(X) · . . . ·Ad(X)).

For large enough r1, . . . , rd the map A 7→ fA is a surjection Mr(n+ 1)→ Hd, but
for smaller values dimCMr(n+ 1) < dimCHd. Tuples of polynomials described by
ABPs give us a natural example of an M ⊂ Hd for which we can actually efficiently
run the rigid homotopy.

To show this, we endow Mr(n+ 1) with the Hermitian norm

‖A‖2 :=

d∑
j=1

n∑
i=0

‖Aj(ei)‖2Frob

where ei is the ith unit vector in Cn+1. With this norm at hand we can define the
standard Gaussian distribution on Mr(n+ 1), via the density πdimCMr(n+1)e−‖A‖

2

.
We say that an ABP is irreducible when r1, . . . , rd−1 ≥ 2. The second main result
in [11], Theorem 1.5, is then the bound for irreducible random ABPs

E
A∼Mr(n+1)

Γ(fA)2 ≤ 3

4
d3(d+ n) log d. (38)

Because the distribution of a Gaussian ABP is unitarily invariant one can derive
from Theorems 4.2 and 4.3 the following [11, Corollary 1.6].

Corollary 4.4. Let f1, . . . , fn be given by independent irreducible Gaussian ABPs
of degree at most D and evaluation complexity at most L, and ε ∈ [0, 1

4 ]. Then Boost-
BlackBoxSolve returns an approximate zero of F = (f1, . . . , fn) with probability
at least 1− ε in

(n,D)O(1)L log log ε−1

operation on average. 2

It is remarkable that the values rj do not occur on the right-hand side of (38).
They do occur, however in the bound in Corollary 4.4 as, it is easy to see using
iterated matrix multiplication, L = O(nDr3) where r = max rj .
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