Principal Foliations of Surfaces near Ellipsoids
DOI:
https://doi.org/10.53733/126Keywords:
lines of curvature, return map, surfaceAbstract
The lines of curvature of a surface embedded in $\R^3$ comprise its principal foliations. Principal foliations of surfaces embedded in $\R^3$ resemble phase portraits of two dimensional vector fields, but there are significant differences in their geometry because principal foliations are not orientable. The Poincar\'e-Bendixson Theorem precludes flows on the two sphere $S^2$ with recurrent trajectories larger than a periodic orbit, but there are convex surfaces whose principal foliations are closely related to non-vanishing vector fields on the torus $T^2$. This paper investigates families of such surfaces that have dense lines of curvature at a Cantor set $C$ of parameters. It introduces discrete one dimensional return maps of a cross-section whose trajectories are the intersections of a line of curvature with the cross-section. The main result proved here is that the return map of a generic surface has \emph{breaks}; i.e., jump discontinuities of its derivative. Khanin and Vul discovered a qualitative difference between one parameter families of smooth diffeomorphisms of the circle and those with breaks: smooth families have positive Lebesgue measure sets of parameters with irrational rotation number and dense trajectories while families of diffeomorphisms with a single break do not. This paper discusses whether Lebesgue almost all parameters yield closed lines of curvature in families of embedded surfaces.