A note on the regularity criterion for the micropolar fluid equations in homogeneous Besov spaces
DOI:
https://doi.org/10.53733/315Keywords:
micropolar fluid equations, velocity components, Besov space, regularity criterionAbstract
This paper gives a further investigation on the regularity criteria for three-dimensional micropolar equations in Besov spaces. More precisely, it is proved that the weak solution $(u, \omega)$ is regular if the velocity $u$ satisfies
$$\int_{0}^{T}\| \nabla_{h}u_{h}\|_{\dot{B}_{p,\frac{2p}{3}}^{0}}^{q} d t<\infty,\ with\ \ \frac{3}{p}+\frac{2}{q}=2,\ \frac{3}{2}<p\leq\infty,$$
or $$\int_{0}^{T}\| \nabla_{h}u\|_{\dot{B}_{\infty ,\infty}^{-1}}^{\frac{8}{3}} d t<\infty,$$
or $$\int_{0}^{T}\|\nabla_{h} u_{h}\|_{\dot{B}_{\infty,\infty}^{-\alpha}}^{\frac{2}{2-\alpha}} d t<\infty,\ with\ 0< \alpha< 1. $$
Downloads
Download data is not yet available.
Downloads
Published
20-12-2023
How to Cite
Li, Q., & Zou, M. (2023). A note on the regularity criterion for the micropolar fluid equations in homogeneous Besov spaces . New Zealand Journal of Mathematics, 54, 57–67. https://doi.org/10.53733/315
Issue
Section
Articles