A Robin inequality for n/phi(n)

Authors

  • Jean-Louis Nicolas Université Claude Bernard, Lyon

DOI:

https://doi.org/10.53733/324

Keywords:

Euler function, Robin inequality, Riemann hypothesis

Abstract

Let $\varphi(n)$ be the Euler function, $\sigma(n)=\sum_{d\mid n}d$ the sum of divisors function and $\gamma=0.577\ldots$ the Euler constant. In 1982, Robin proved that, under the Riemann hypothesis, $\sigma(n)/n < e^\gamma \log\log n$ holds for $n > 5040$ and that this inequality is equivalent to the Riemann hypothesis. The aim of this paper is to give a similar equivalence for $n/\varphi(n)$.

Downloads

Download data is not yet available.

Author Biography

Jean-Louis Nicolas, Université Claude Bernard, Lyon

Jean-Louis Nicolas
Universit\'e de Lyon,
Universit\'e Claude Bernard Lyon 1,
CNRS UMR 5208

Institut Camille Jordan,
Math\'ematiques,
B\^at. Doyen Jean Braconnier,
43 Bd du 11 Novembre 1918,
F-69622 Villeurbanne cedex,
France
nicolas@math.univ-lyon1.fr

Downloads

Published

06-05-2024

How to Cite

Nicolas, J.-L. (2024). A Robin inequality for n/phi(n). New Zealand Journal of Mathematics, 55, 1–9. https://doi.org/10.53733/324

Issue

Section

Articles