On the Cauchy integral theorem and Polish spaces

Authors

  • Cristian López Morales Universidad Nacional de Colombia, Sede Manizales
  • Camilo Ramírez Maluendas Universidad Nacional de Colombia, Sede Manizales

DOI:

https://doi.org/10.53733/422

Keywords:

Cauchy Integral Theorem, Polish Spaces, Characteristic System, Cantor-Bendixson derivateive

Abstract

We prove that if a continuous function $f$ in an open subset $U\subset\mathbb{C}$ is analytic in $U\setminus X$, where $X\subset U$ is a Polish space having characteristic system $(k,n)\in\mathbb N_0\times\mathbb N$, then the complex line integral of $f$ along the boundary of any triangle in $U$ vanishes.

Downloads

Download data is not yet available.

Author Biographies

Cristian López Morales, Universidad Nacional de Colombia, Sede Manizales

Cristian López Morales
Universidad Nacional de Colombia, Sede Manizales
Facultad de Ciencias Exactas y Naturales
Departamento de Matemáticas y Estadística,
Cr. 27 # 64--60
Manizales, Caldas
Colombia
crlopezmo@unal.edu.co

Camilo Ramírez Maluendas, Universidad Nacional de Colombia, Sede Manizales

Camilo Ramírez Maluendas
Universidad Nacional de Colombia, Sede Manizales
Facultad de Ciencias Exactas y Naturales
Departamento de Matemáticas y Estadística,
Cr. 27 # 64--60
Manizales, Caldas
Colombia
camramirezma@unal.edu.co

Downloads

Published

14-08-2025

How to Cite

López Morales, C., & Ramírez Maluendas, C. (2025). On the Cauchy integral theorem and Polish spaces. New Zealand Journal of Mathematics, 56, 45–51. https://doi.org/10.53733/422

Issue

Section

Articles