Boundary quotients of the right Toeplitz algebra of the affine semigroup over the natural numbers
DOI:
https://doi.org/10.53733/90Keywords:
C*-algebra, quasi-lattice ordered group, KMS states, Toeplitz algebraAbstract
We study the Toeplitz $C^*$-algebra generated by the right-regular representation of the semigroup ${\mathbb N \rtimes \mathbb N^\times}$, which we call the right Toeplitz algebra. We analyse its structure by studying three distinguished quotients. We show that the multiplicative boundary quotient is isomorphic to a crossed product of the Toeplitz algebra of the additive rationals by an action of the multiplicative rationals, and study its ideal structure. The Crisp--Laca boundary quotient is isomorphic to the $C^*$-algebra of the group ${\mathbb Q_+^\times}\!\! \ltimes \mathbb Q$. There is a natural dynamics on the right Toeplitz algebra and all its KMS states factor through the additive boundary quotient. We describe the KMS simplex for inverse temperatures greater than one.